AGENTIC AI IN THE ENTERPRISE: STRATEGY, ARCHITECTURE, AND IMPLEMENTATION – PART 5

This is a continuation of my previous post, which can be found here. This will be our last post of this series.

Let us recap the key takaways from our previous post –

Two cloud patterns show how MCP standardizes safe AI-to-system work. Azure “agent factory”: You ask in Teams; Azure AI Foundry dispatches a specialist agent (HR/Sales). The agent calls a specific MCP server (Functions/Logic Apps) for CRM, SharePoint, or SQL via API Management. Entra ID enforces access; Azure Monitor audits. AWS “composable serverless agents”: In Bedrock, domain agents (Financial/IT Ops) invoke Lambda-based MCP tools for DynamoDB, S3, or CloudWatch through API Gateway with IAM and optional VPC. In both, agents never hold credentials; tools map one-to-one to systems, improving security, clarity, scalability, and compliance.

In this post, we’ll discuss the GCP factory pattern.

The GCP “unified workbench” pattern prioritizes a unified, data-centric platform for AI development, integrating seamlessly with Vertex AI and Google’s expertise in AI and data analytics. This approach is well-suited for AI-first companies and data-intensive organizations that want to build agents that leverage cutting-edge research tools.

Let’s explore the following diagram based on this –

Imagine Mia, a clinical operations lead, opens a simple app and asks: “Which clinics had the longest wait times this week? Give me a quick summary I can share.”

  • The app quietly sends Mia’s request to Vertex AI Agent Builder—think of it as the switchboard operator.
  • Vertex AI picks the Data Analysis agent (the “specialist” for questions like Mia’s).
  • That agent doesn’t go rummaging through databases. Instead, it uses a safe, preapproved tool—an MCP Server—to query BigQuery, where the data lives.
  • The tool fetches results and returns them to Mia—no passwords in the open, no risky shortcuts—just the answer, fast and safely.

Now meet Ravi, a developer who asks: “Show me the latest app metrics and confirm yesterday’s patch didn’t break the login table.”

  • The app routes Ravi’s request to Vertex AI.
  • Vertex AI chooses the Developer agent.
  • That agent calls a different tool—an MCP Server designed for Cloud SQL—to check the login table and run a safe query.
  • Results come back with guardrails intact. If the agent ever needs files, there’s also a Cloud Storage tool ready to fetch or store documents.

Let us understand how the underlying flow of activities took place –

  • User Interface:
    • Entry point: Vertex AI console or a custom app.
    • Sends a single request; no direct credentials or system access exposed to the user.
  • Orchestration: Vertex AI Agent Builder (MCP Host)
    • Routes the request to the most suitable agent:
      • Agent A (Data Analysis) for analytics/BI-style questions.
      • Agent B (Developer) for application/data-ops tasks.
  • Tooling via MCP Servers on Cloud Run
    • Each MCP Server is a purpose-built adapter with least-privilege access to exactly one service:
      • Server1 → BigQuery (analytics/warehouse) — used by Agent A in this diagram.
      • Server2 → Cloud Storage (GCS) (files/objects) — available when file I/O is needed.
      • Server3 → Cloud SQL (relational DB) — used by Agent B in this diagram.
    • Agents never hold database credentials; they request actions from the right tool.
  • Enterprise Systems
    • BigQueryCloud Storage, and Cloud SQL are the systems of record that the tools interact with.
  • Security, Networking, and Observability
    • GCP IAM: AuthN/AuthZ for Vertex AI and each MCP Server (fine-grained roles, least privilege).
    • GCP VPC: Private network paths for all Cloud Run MCP Servers (isolation, egress control).
    • Cloud Monitoring: Metrics, logs, and alerts across agents and tools (auditability, SLOs).
  • Return Path
    • Results flow back from the service → MCP Server → Agent → Vertex AI → UI.
    • Policies and logs track who requested what, when, and how.
  • One entry point for questions.
  • Clear accountability: specialists (agents) act within guardrails.
  • Built-in safety (IAM/VPC) and visibility (Monitoring) for trust.
  • Separation of concerns: agents decide what to do; tools (MCP Servers) decide how to do it.
  • Scalable: add a new tool (e.g., Pub/Sub or Vertex AI Feature Store) without changing the UI or agents.
  • Auditable & maintainable: each tool maps to one service with explicit IAM and VPC controls.

So, we’ve concluded the series with the above post. I hope you like it.

I’ll bring some more exciting topics in the coming days from the new advanced world of technology.

Till then, Happy Avenging! 🙂

AGENTIC AI IN THE ENTERPRISE: STRATEGY, ARCHITECTURE, AND IMPLEMENTATION – PART 3

This is a continuation of my previous post, which can be found here.

Let us recap the key takaways from our previous post –

Enterprise AI, utilizing the Model Context Protocol (MCP), leverages an open standard that enables AI systems to securely and consistently access enterprise data and tools. MCP replaces brittle “N×M” integrations between models and systems with a standardized client–server pattern: an MCP host (e.g., IDE or chatbot) runs an MCP client that communicates with lightweight MCP servers, which wrap external systems via JSON-RPC. Servers expose three assets—Resources (data), Tools (actions), and Prompts (templates)—behind permissions, access control, and auditability. This design enables real-time context, reduces hallucinations, supports model- and cloud-agnostic interoperability, and accelerates “build once, integrate everywhere” deployment. A typical flow (e.g., retrieving a customer’s latest order) encompasses intent parsing, authorized tool invocation, query translation/execution, and the return of a normalized JSON result to the model for natural-language delivery. Performance introduces modest overhead (RPC hops, JSON (de)serialization, network transit) and scale considerations (request volume, significant results, context-window pressure). Mitigations include in-memory/semantic caching, optimized SQL with indexing, pagination, and filtering, connection pooling, and horizontal scaling with load balancing. In practice, small latency costs are often outweighed by the benefits of higher accuracy, stronger governance, and a decoupled, scalable architecture.

Compared to other approaches, the Model Context Protocol (MCP) offers a uniquely standardized and secure framework for AI-tool integration, shifting from brittle, custom-coded connections to a universal plug-and-play model. It is not a replacement for underlying systems, such as APIs or databases, but instead acts as an intelligent, secure abstraction layer designed explicitly for AI agents.

This approach was the traditional method for AI integration before standards like MCP emerged.

  • Custom API integrations (traditional): Each AI application requires a custom-built connector for every external system it needs to access, leading to an N x M integration problem (the number of connectors grows exponentially with the number of models and systems). This approach is resource-intensive, challenging to maintain, and prone to breaking when underlying APIs change.
  • MCP: The standardized protocol eliminates the N x M problem by creating a universal interface. Tool creators build a single MCP server for their system, and any MCP-compatible AI agent can instantly access it. This process decouples the AI model from the underlying implementation details, drastically reducing integration and maintenance costs.

For more detailed information, please refer to the following link.

RAG is a technique that retrieves static documents to augment an LLM’s knowledge, while MCP focuses on live interactions. They are complementary, not competing. 

  • RAG:
    • Focus: Retrieving and summarizing static, unstructured data, such as documents, manuals, or knowledge bases.
    • Best for: Providing background knowledge and general information, as in a policy lookup tool or customer service bot.
    • Data type: Unstructured, static knowledge.
  • MCP:
    • Focus: Accessing and acting on real-time, structured, and dynamic data from databases, APIs, and business systems.
    • Best for: Agentic use cases involving real-world actions, like pulling live sales reports from a CRM or creating a ticket in a project management tool.
    • Data type: Structured, real-time, and dynamic data.

Before MCP, platforms like OpenAI offered proprietary plugin systems to extend LLM capabilities.

  • LLM plugins:
    • Proprietary: Tied to a specific AI vendor (e.g., OpenAI).
    • Limited: Rely on the vendor’s API function-calling mechanism, which focuses on call formatting but not standardized execution.
    • Centralized: Managed by the AI vendor, creating a risk of vendor lock-in.
  • MCP:
    • Open standard: Based on a public, interoperable protocol (JSON-RPC 2.0), making it model-agnostic and usable across different platforms.
    • Infrastructure layer: Provides a standardized infrastructure for agents to discover and use any compliant tool, regardless of the underlying LLM.
    • Decentralized: Promotes a flexible ecosystem and reduces the risk of vendor lock-in. 

The “agent factory” pattern: Azure focuses on providing managed services for building and orchestrating AI agents, tightly integrated with its enterprise security and governance features. The MCP architecture is a core component of the Azure AI Foundry, serving as a secure, managed “agent factory.” 

  • AI orchestration layer: The Azure AI Agent Service, within Azure AI Foundry, acts as the central host and orchestrator. It provides the control plane for creating, deploying, and managing multiple specialized agents, and it natively supports the MCP standard.
  • AI model layer: Agents in the Foundry can be powered by various models, including those from Azure OpenAI Service, commercial models from partners, or open-source models.
  • MCP server and tool layer: MCP servers are deployed using serverless functions, such as Azure Functions or Azure Logic Apps, to wrap existing enterprise systems. These servers expose tools for interacting with enterprise data sources like SharePoint, Azure AI Search, and Azure Blob Storage.
  • Data and security layer: Data is secured using Microsoft Entra ID (formerly Azure AD) for authentication and access control, with robust security policies enforced via Azure API Management. Access to data sources, such as databases and storage, is managed securely through private networks and Managed Identity. 

The “composable serverless agent” pattern: AWS emphasizes a modular, composable, and serverless approach, leveraging its extensive portfolio of services to build sophisticated, flexible, and scalable AI solutions. The MCP architecture here aligns with the principle of creating lightweight, event-driven services that AI agents can orchestrate. 

  • The AI orchestration layer, which includes Amazon Bedrock Agents or custom agent frameworks deployed via AWS Fargate or Lambda, acts as the MCP hosts. Bedrock Agents provide built-in orchestration, while custom agents offer greater flexibility and customization options.
  • AI model layer: The models are sourced from Amazon Bedrock, which provides a wide selection of foundation models.
  • MCP server and tool layer: MCP servers are deployed as serverless AWS Lambda functions. AWS offers pre-built MCP servers for many of its services, including the AWS Serverless MCP Server for managing serverless applications and the AWS Lambda Tool MCP Server for invoking existing Lambda functions as tools.
  • Data and security layer: Access is tightly controlled using AWS Identity and Access Management (IAM) roles and policies, with fine-grained permissions for each MCP server. Private data sources like databases (Amazon DynamoDB) and storage (Amazon S3) are accessed securely within a Virtual Private Cloud (VPC). 

The “unified workbench” pattern: GCP focuses on providing a unified, open, and data-centric platform for AI development. The MCP architecture on GCP integrates natively with the Vertex AI platform, treating MCP servers as first-class tools that can be dynamically discovered and used within a single workbench. 

  • AI orchestration layer: The Vertex AI Agent Builder serves as the central environment for building and managing conversational AI and other agents. It orchestrates workflows and manages tool invocation for agents.
  • AI model layer: Agents use foundation models available through the Vertex AI Model Garden or the Gemini API.
  • MCP server and tool layer: MCP servers are deployed as containerized microservices on Cloud Run or managed by services like App Engine. These servers contain tools that interact with GCP services, such as BigQueryCloud Storage, and Cloud SQL. GCP offers pre-built MCP server implementations, such as the GCP MCP Toolbox, for integration with its databases.
  • Data and security layer: Vertex AI Vector Search and other data sources are encapsulated within the MCP server tools to provide contextual information. Access to these services is managed by Identity and Access Management (IAM) and secured through virtual private clouds. The MCP server can leverage Vertex AI Context Caching for improved performance.

Note that all the native technology is referred to in each respective cloud. Hence, some of the better technologies can be used in place of the tool mentioned here. This is more of a concept-level comparison rather than industry-wise implementation approaches.


We’ll go ahead and conclude this post here & continue discussing on a further deep dive in the next post.

Till then, Happy Avenging! 🙂

Real-time video summary assistance App – Part 2

As a continuation of the previous post, I would like to continue my discussion about the implementation of MCP protocols among agents. But before that, I want to add the quick demo one more time to recap our objectives.

Let us recap the process flow –

Also, understand the groupings of scripts by each group as posted in the previous post –

Message-Chaining Protocol (MCP) Implementation:

    clsMCPMessage.py
    clsMCPBroker.py

YouTube Transcript Extraction:

    clsYouTubeVideoProcessor.py

Language Detection:

    clsLanguageDetector.py

Translation Services & Agents:

    clsTranslationAgent.py
    clsTranslationService.py

Documentation Agent:

    clsDocumentationAgent.py
    
Research Agent:

    clsDocumentationAgent.py

Great! Now, we’ll continue with the main discussion.


def extract_youtube_id(youtube_url):
    """Extract YouTube video ID from URL"""
    youtube_id_match = re.search(r'(?:v=|\/)([0-9A-Za-z_-]{11}).*', youtube_url)
    if youtube_id_match:
        return youtube_id_match.group(1)
    return None

def get_youtube_transcript(youtube_url):
    """Get transcript from YouTube video"""
    video_id = extract_youtube_id(youtube_url)
    if not video_id:
        return {"error": "Invalid YouTube URL or ID"}
    
    try:
        transcript_list = YouTubeTranscriptApi.list_transcripts(video_id)
        
        # First try to get manual transcripts
        try:
            transcript = transcript_list.find_manually_created_transcript(["en"])
            transcript_data = transcript.fetch()
            print(f"Debug - Manual transcript format: {type(transcript_data)}")
            if transcript_data and len(transcript_data) > 0:
                print(f"Debug - First item type: {type(transcript_data[0])}")
                print(f"Debug - First item sample: {transcript_data[0]}")
            return {"text": transcript_data, "language": "en", "auto_generated": False}
        except Exception as e:
            print(f"Debug - No manual transcript: {str(e)}")
            # If no manual English transcript, try any available transcript
            try:
                available_transcripts = list(transcript_list)
                if available_transcripts:
                    transcript = available_transcripts[0]
                    print(f"Debug - Using transcript in language: {transcript.language_code}")
                    transcript_data = transcript.fetch()
                    print(f"Debug - Auto transcript format: {type(transcript_data)}")
                    if transcript_data and len(transcript_data) > 0:
                        print(f"Debug - First item type: {type(transcript_data[0])}")
                        print(f"Debug - First item sample: {transcript_data[0]}")
                    return {
                        "text": transcript_data, 
                        "language": transcript.language_code, 
                        "auto_generated": transcript.is_generated
                    }
                else:
                    return {"error": "No transcripts available for this video"}
            except Exception as e:
                return {"error": f"Error getting transcript: {str(e)}"}
    except Exception as e:
        return {"error": f"Error getting transcript list: {str(e)}"}

# ----------------------------------------------------------------------------------
# YouTube Video Processor
# ----------------------------------------------------------------------------------

class clsYouTubeVideoProcessor:
    """Process YouTube videos using the agent system"""
    
    def __init__(self, documentation_agent, translation_agent, research_agent):
        self.documentation_agent = documentation_agent
        self.translation_agent = translation_agent
        self.research_agent = research_agent
    
    def process_youtube_video(self, youtube_url):
        """Process a YouTube video"""
        print(f"Processing YouTube video: {youtube_url}")
        
        # Extract transcript
        transcript_result = get_youtube_transcript(youtube_url)
        
        if "error" in transcript_result:
            return {"error": transcript_result["error"]}
        
        # Start a new conversation
        conversation_id = self.documentation_agent.start_processing()
        
        # Process transcript segments
        transcript_data = transcript_result["text"]
        transcript_language = transcript_result["language"]
        
        print(f"Debug - Type of transcript_data: {type(transcript_data)}")
        
        # For each segment, detect language and translate if needed
        processed_segments = []
        
        try:
            # Make sure transcript_data is a list of dictionaries with text and start fields
            if isinstance(transcript_data, list):
                for idx, segment in enumerate(transcript_data):
                    print(f"Debug - Processing segment {idx}, type: {type(segment)}")
                    
                    # Extract text properly based on the type
                    if isinstance(segment, dict) and "text" in segment:
                        text = segment["text"]
                        start = segment.get("start", 0)
                    else:
                        # Try to access attributes for non-dict types
                        try:
                            text = segment.text
                            start = getattr(segment, "start", 0)
                        except AttributeError:
                            # If all else fails, convert to string
                            text = str(segment)
                            start = idx * 5  # Arbitrary timestamp
                    
                    print(f"Debug - Extracted text: {text[:30]}...")
                    
                    # Create a standardized segment
                    std_segment = {
                        "text": text,
                        "start": start
                    }
                    
                    # Process through translation agent
                    translation_result = self.translation_agent.process_text(text, conversation_id)
                    
                    # Update segment with translation information
                    segment_with_translation = {
                        **std_segment,
                        "translation_info": translation_result
                    }
                    
                    # Use translated text for documentation
                    if "final_text" in translation_result and translation_result["final_text"] != text:
                        std_segment["processed_text"] = translation_result["final_text"]
                    else:
                        std_segment["processed_text"] = text
                    
                    processed_segments.append(segment_with_translation)
            else:
                # If transcript_data is not a list, treat it as a single text block
                print(f"Debug - Transcript is not a list, treating as single text")
                text = str(transcript_data)
                std_segment = {
                    "text": text,
                    "start": 0
                }
                
                translation_result = self.translation_agent.process_text(text, conversation_id)
                segment_with_translation = {
                    **std_segment,
                    "translation_info": translation_result
                }
                
                if "final_text" in translation_result and translation_result["final_text"] != text:
                    std_segment["processed_text"] = translation_result["final_text"]
                else:
                    std_segment["processed_text"] = text
                
                processed_segments.append(segment_with_translation)
                
        except Exception as e:
            print(f"Debug - Error processing transcript: {str(e)}")
            return {"error": f"Error processing transcript: {str(e)}"}
        
        # Process the transcript with the documentation agent
        documentation_result = self.documentation_agent.process_transcript(
            processed_segments,
            conversation_id
        )
        
        return {
            "youtube_url": youtube_url,
            "transcript_language": transcript_language,
            "processed_segments": processed_segments,
            "documentation": documentation_result,
            "conversation_id": conversation_id
        }

Let us understand this step-by-step:

Part 1: Getting the YouTube Transcript

def extract_youtube_id(youtube_url):
    ...

This extracts the unique video ID from any YouTube link. 

def get_youtube_transcript(youtube_url):
    ...
  • This gets the actual spoken content of the video.
  • It tries to get a manual transcript first (created by humans).
  • If not available, it falls back to an auto-generated version (created by YouTube’s AI).
  • If nothing is found, it gives back an error message like: “Transcript not available.”

Part 2: Processing the Video with Agents

class clsYouTubeVideoProcessor:
    ...

This is like the control center that tells each intelligent agent what to do with the transcript. Here are the detailed steps:

1. Start the Process

def process_youtube_video(self, youtube_url):
    ...
  • The system starts with a YouTube video link.
  • It prints a message like: “Processing YouTube video: [link]”

2. Extract the Transcript

  • The system runs the get_youtube_transcript() function.
  • If it fails, it returns an error (e.g., invalid link or no subtitles available).

3. Start a “Conversation”

  • The documentation agent begins a new session, tracked by a unique conversation ID.
  • Think of this like opening a new folder in a shared team workspace to store everything related to this video.

4. Go Through Each Segment of the Transcript

  • The spoken text is often broken into small parts (segments), like subtitles.
  • For each part:
    • It checks the text.
    • It finds out the time that part was spoken.
    • It sends it to the translation agent to clean up or translate the text.

5. Translate (if needed)

  • If the translation agent finds a better or translated version, it replaces the original.
  • Otherwise, it keeps the original.

6. Prepare for Documentation

  • After translation, the segment is passed to the documentation agent.
  • This agent might:
    • Summarize the content,
    • Highlight important terms,
    • Structure it into a readable format.

7. Return the Final Result

The system gives back a structured package with:

  • The video link
  • The original language
  • The transcript in parts (processed and translated)
  • A documentation summary
  • The conversation ID (for tracking or further updates)

class clsDocumentationAgent:
    """Documentation Agent built with LangChain"""
    
    def __init__(self, agent_id: str, broker: clsMCPBroker):
        self.agent_id = agent_id
        self.broker = broker
        self.broker.register_agent(agent_id)
        
        # Initialize LangChain components
        self.llm = ChatOpenAI(
            model="gpt-4-0125-preview",
            temperature=0.1,
            api_key=OPENAI_API_KEY
        )
        
        # Create tools
        self.tools = [
            clsSendMessageTool(sender_id=self.agent_id, broker=self.broker)
        ]
        
        # Set up LLM with tools
        self.llm_with_tools = self.llm.bind(
            tools=[tool.tool_config for tool in self.tools]
        )
        
        # Setup memory
        self.memory = ConversationBufferMemory(
            memory_key="chat_history",
            return_messages=True
        )
        
        # Create prompt
        self.prompt = ChatPromptTemplate.from_messages([
            ("system", """You are a Documentation Agent for YouTube video transcripts. Your responsibilities include:
                1. Process YouTube video transcripts
                2. Identify key points, topics, and main ideas
                3. Organize content into a coherent and structured format
                4. Create concise summaries
                5. Request research information when necessary
                
                When you need additional context or research, send a request to the Research Agent.
                Always maintain a professional tone and ensure your documentation is clear and organized.
            """),
            MessagesPlaceholder(variable_name="chat_history"),
            ("human", "{input}"),
            MessagesPlaceholder(variable_name="agent_scratchpad"),
        ])
        
        # Create agent
        self.agent = (
            {
                "input": lambda x: x["input"],
                "chat_history": lambda x: self.memory.load_memory_variables({})["chat_history"],
                "agent_scratchpad": lambda x: format_to_openai_tool_messages(x["intermediate_steps"]),
            }
            | self.prompt
            | self.llm_with_tools
            | OpenAIToolsAgentOutputParser()
        )
        
        # Create agent executor
        self.agent_executor = AgentExecutor(
            agent=self.agent,
            tools=self.tools,
            verbose=True,
            memory=self.memory
        )
        
        # Video data
        self.current_conversation_id = None
        self.video_notes = {}
        self.key_points = []
        self.transcript_segments = []
        
    def start_processing(self) -> str:
        """Start processing a new video"""
        self.current_conversation_id = str(uuid.uuid4())
        self.video_notes = {}
        self.key_points = []
        self.transcript_segments = []
        
        return self.current_conversation_id
    
    def process_transcript(self, transcript_segments, conversation_id=None):
        """Process a YouTube transcript"""
        if not conversation_id:
            conversation_id = self.start_processing()
        self.current_conversation_id = conversation_id
        
        # Store transcript segments
        self.transcript_segments = transcript_segments
        
        # Process segments
        processed_segments = []
        for segment in transcript_segments:
            processed_result = self.process_segment(segment)
            processed_segments.append(processed_result)
        
        # Generate summary
        summary = self.generate_summary()
        
        return {
            "processed_segments": processed_segments,
            "summary": summary,
            "conversation_id": conversation_id
        }
    
    def process_segment(self, segment):
        """Process individual transcript segment"""
        text = segment.get("text", "")
        start = segment.get("start", 0)
        
        # Use LangChain agent to process the segment
        result = self.agent_executor.invoke({
            "input": f"Process this video transcript segment at timestamp {start}s: {text}. If research is needed, send a request to the research_agent."
        })
        
        # Update video notes
        timestamp = start
        self.video_notes[timestamp] = {
            "text": text,
            "analysis": result["output"]
        }
        
        return {
            "timestamp": timestamp,
            "text": text,
            "analysis": result["output"]
        }
    
    def handle_mcp_message(self, message: clsMCPMessage) -> Optional[clsMCPMessage]:
        """Handle an incoming MCP message"""
        if message.message_type == "research_response":
            # Process research information received from Research Agent
            research_info = message.content.get("text", "")
            
            result = self.agent_executor.invoke({
                "input": f"Incorporate this research information into video analysis: {research_info}"
            })
            
            # Send acknowledgment back to Research Agent
            response = clsMCPMessage(
                sender=self.agent_id,
                receiver=message.sender,
                message_type="acknowledgment",
                content={"text": "Research information incorporated into video analysis."},
                reply_to=message.id,
                conversation_id=message.conversation_id
            )
            
            self.broker.publish(response)
            return response
        
        elif message.message_type == "translation_response":
            # Process translation response from Translation Agent
            translation_result = message.content
            
            # Process the translated text
            if "final_text" in translation_result:
                text = translation_result["final_text"]
                original_text = translation_result.get("original_text", "")
                language_info = translation_result.get("language", {})
                
                result = self.agent_executor.invoke({
                    "input": f"Process this translated text: {text}\nOriginal language: {language_info.get('language', 'unknown')}\nOriginal text: {original_text}"
                })
                
                # Update notes with translation information
                for timestamp, note in self.video_notes.items():
                    if note["text"] == original_text:
                        note["translated_text"] = text
                        note["language"] = language_info
                        break
            
            return None
        
        return None
    
    def run(self):
        """Run the agent to listen for MCP messages"""
        print(f"Documentation Agent {self.agent_id} is running...")
        while True:
            message = self.broker.get_message(self.agent_id, timeout=1)
            if message:
                self.handle_mcp_message(message)
            time.sleep(0.1)
    
    def generate_summary(self) -> str:
        """Generate a summary of the video"""
        if not self.video_notes:
            return "No video data available to summarize."
        
        all_notes = "\n".join([f"{ts}: {note['text']}" for ts, note in self.video_notes.items()])
        
        result = self.agent_executor.invoke({
            "input": f"Generate a concise summary of this YouTube video, including key points and topics:\n{all_notes}"
        })
        
        return result["output"]

Let us understand the key methods in a step-by-step manner:

The Documentation Agent is like a smart assistant that watches a YouTube video, takes notes, pulls out important ideas, and creates a summary — almost like a professional note-taker trained to help educators, researchers, and content creators. It works with a team of other assistants, like a Translator Agent and a Research Agent, and they all talk to each other through a messaging system.

1. Starting to Work on a New Video

    def start_processing(self) -> str
    

    When a new video is being processed:

    • A new project ID is created.
    • Old notes and transcripts are cleared to start fresh.

    2. Processing the Whole Transcript

    def process_transcript(...)
    

    This is where the assistant:

    • Takes in the full transcript (what was said in the video).
    • Breaks it into small parts (like subtitles).
    • Sends each part to the smart brain for analysis.
    • Collects the results.
    • Finally, a summary of all the main ideas is created.

    3. Processing One Transcript Segment at a Time

    def process_segment(self, segment)
    

    For each chunk of the video:

    • The assistant reads the text and timestamp.
    • It asks GPT-4 to analyze it and suggest important insights.
    • It saves that insight along with the original text and timestamp.

    4. Handling Incoming Messages from Other Agents

    def handle_mcp_message(self, message)
    

    The assistant can also receive messages from teammates (other agents):

    If the message is from the Research Agent:

    • It reads new information and adds it to its notes.
    • It replies with a thank-you message to say it got the research.

    If the message is from the Translation Agent:

    • It takes the translated version of a transcript.
    • Updates its notes to reflect the translated text and its language.

    This is like a team of assistants emailing back and forth to make sure the notes are complete and accurate.

    5. Summarizing the Whole Video

    def generate_summary(self)
    

    After going through all the transcript parts, the agent asks GPT-4 to create a short, clean summary — identifying:

    • Main ideas
    • Key talking points
    • Structure of the content

    The final result is clear, professional, and usable in learning materials or documentation.


    class clsResearchAgent:
        """Research Agent built with AutoGen"""
        
        def __init__(self, agent_id: str, broker: clsMCPBroker):
            self.agent_id = agent_id
            self.broker = broker
            self.broker.register_agent(agent_id)
            
            # Configure AutoGen directly with API key
            if not OPENAI_API_KEY:
                print("Warning: OPENAI_API_KEY not set for ResearchAgent")
                
            # Create config list directly instead of loading from file
            config_list = [
                {
                    "model": "gpt-4-0125-preview",
                    "api_key": OPENAI_API_KEY
                }
            ]
            # Create AutoGen assistant for research
            self.assistant = AssistantAgent(
                name="research_assistant",
                system_message="""You are a Research Agent for YouTube videos. Your responsibilities include:
                    1. Research topics mentioned in the video
                    2. Find relevant information, facts, references, or context
                    3. Provide concise, accurate information to support the documentation
                    4. Focus on delivering high-quality, relevant information
                    
                    Respond directly to research requests with clear, factual information.
                """,
                llm_config={"config_list": config_list, "temperature": 0.1}
            )
            
            # Create user proxy to handle message passing
            self.user_proxy = UserProxyAgent(
                name="research_manager",
                human_input_mode="NEVER",
                code_execution_config={"work_dir": "coding", "use_docker": False},
                default_auto_reply="Working on the research request..."
            )
            
            # Current conversation tracking
            self.current_requests = {}
        
        def handle_mcp_message(self, message: clsMCPMessage) -> Optional[clsMCPMessage]:
            """Handle an incoming MCP message"""
            if message.message_type == "request":
                # Process research request from Documentation Agent
                request_text = message.content.get("text", "")
                
                # Use AutoGen to process the research request
                def research_task():
                    self.user_proxy.initiate_chat(
                        self.assistant,
                        message=f"Research request for YouTube video content: {request_text}. Provide concise, factual information."
                    )
                    # Return last assistant message
                    return self.assistant.chat_messages[self.user_proxy.name][-1]["content"]
                
                # Execute research task
                research_result = research_task()
                
                # Send research results back to Documentation Agent
                response = clsMCPMessage(
                    sender=self.agent_id,
                    receiver=message.sender,
                    message_type="research_response",
                    content={"text": research_result},
                    reply_to=message.id,
                    conversation_id=message.conversation_id
                )
                
                self.broker.publish(response)
                return response
            
            return None
        
        def run(self):
            """Run the agent to listen for MCP messages"""
            print(f"Research Agent {self.agent_id} is running...")
            while True:
                message = self.broker.get_message(self.agent_id, timeout=1)
                if message:
                    self.handle_mcp_message(message)
                time.sleep(0.1)
    

    Let us understand the key methods in detail.

    1. Receiving and Responding to Research Requests

      def handle_mcp_message(self, message)
      

      When the Research Agent gets a message (like a question or request for info), it:

      1. Reads the message to see what needs to be researched.
      2. Asks GPT-4 to find helpful, accurate info about that topic.
      3. Sends the answer back to whoever asked the question (usually the Documentation Agent).

      class clsTranslationAgent:
          """Agent for language detection and translation"""
          
          def __init__(self, agent_id: str, broker: clsMCPBroker):
              self.agent_id = agent_id
              self.broker = broker
              self.broker.register_agent(agent_id)
              
              # Initialize language detector
              self.language_detector = clsLanguageDetector()
              
              # Initialize translation service
              self.translation_service = clsTranslationService()
          
          def process_text(self, text, conversation_id=None):
              """Process text: detect language and translate if needed, handling mixed language content"""
              if not conversation_id:
                  conversation_id = str(uuid.uuid4())
              
              # Detect language with support for mixed language content
              language_info = self.language_detector.detect(text)
              
              # Decide if translation is needed
              needs_translation = True
              
              # Pure English content doesn't need translation
              if language_info["language_code"] == "en-IN" or language_info["language_code"] == "unknown":
                  needs_translation = False
              
              # For mixed language, check if it's primarily English
              if language_info.get("is_mixed", False) and language_info.get("languages", []):
                  english_langs = [
                      lang for lang in language_info.get("languages", []) 
                      if lang["language_code"] == "en-IN" or lang["language_code"].startswith("en-")
                  ]
                  
                  # If the highest confidence language is English and > 60% confident, don't translate
                  if english_langs and english_langs[0].get("confidence", 0) > 0.6:
                      needs_translation = False
              
              if needs_translation:
                  # Translate using the appropriate service based on language detection
                  translation_result = self.translation_service.translate(text, language_info)
                  
                  return {
                      "original_text": text,
                      "language": language_info,
                      "translation": translation_result,
                      "final_text": translation_result.get("translated_text", text),
                      "conversation_id": conversation_id
                  }
              else:
                  # Already English or unknown language, return as is
                  return {
                      "original_text": text,
                      "language": language_info,
                      "translation": {"provider": "none"},
                      "final_text": text,
                      "conversation_id": conversation_id
                  }
          
          def handle_mcp_message(self, message: clsMCPMessage) -> Optional[clsMCPMessage]:
              """Handle an incoming MCP message"""
              if message.message_type == "translation_request":
                  # Process translation request from Documentation Agent
                  text = message.content.get("text", "")
                  
                  # Process the text
                  result = self.process_text(text, message.conversation_id)
                  
                  # Send translation results back to requester
                  response = clsMCPMessage(
                      sender=self.agent_id,
                      receiver=message.sender,
                      message_type="translation_response",
                      content=result,
                      reply_to=message.id,
                      conversation_id=message.conversation_id
                  )
                  
                  self.broker.publish(response)
                  return response
              
              return None
          
          def run(self):
              """Run the agent to listen for MCP messages"""
              print(f"Translation Agent {self.agent_id} is running...")
              while True:
                  message = self.broker.get_message(self.agent_id, timeout=1)
                  if message:
                      self.handle_mcp_message(message)
                  time.sleep(0.1)

      Let us understand the key methods in step-by-step manner:

      1. Understanding and Translating Text:

      def process_text(...)
      

      This is the core job of the agent. Here’s what it does with any piece of text:

      Step 1: Detect the Language

      • It tries to figure out the language of the input text.
      • It can handle cases where more than one language is mixed together, which is common in casual speech or subtitles.

      Step 2: Decide Whether to Translate

      • If the text is clearly in English, or it’s unclear what the language is, it decides not to translate.
      • If the text is mostly in another language or has less than 60% confidence in being English, it will translate it into English.

      Step 3: Translate (if needed)

      • If translation is required, it uses the translation service to do the job.
      • Then it packages all the information: the original text, detected language, the translated version, and a unique conversation ID.

      Step 4: Return the Results

      • If no translation is needed, it returns the original text and a note saying “no translation was applied.”

      2. Receiving Messages and Responding

      def handle_mcp_message(...)
      

      The agent listens for messages from other agents. When someone asks it to translate something:

      • It takes the text from the message.
      • Runs it through the process_text function (as explained above).
      • Sends the translated (or original) result to the person who asked.
      class clsTranslationService:
          """Translation service using multiple providers with support for mixed languages"""
          
          def __init__(self):
              # Initialize Sarvam AI client
              self.sarvam_api_key = SARVAM_API_KEY
              self.sarvam_url = "https://api.sarvam.ai/translate"
              
              # Initialize Google Cloud Translation client using simple HTTP requests
              self.google_api_key = GOOGLE_API_KEY
              self.google_translate_url = "https://translation.googleapis.com/language/translate/v2"
          
          def translate_with_sarvam(self, text, source_lang, target_lang="en-IN"):
              """Translate text using Sarvam AI (for Indian languages)"""
              if not self.sarvam_api_key:
                  return {"error": "Sarvam API key not set"}
              
              headers = {
                  "Content-Type": "application/json",
                  "api-subscription-key": self.sarvam_api_key
              }
              
              payload = {
                  "input": text,
                  "source_language_code": source_lang,
                  "target_language_code": target_lang,
                  "speaker_gender": "Female",
                  "mode": "formal",
                  "model": "mayura:v1"
              }
              
              try:
                  response = requests.post(self.sarvam_url, headers=headers, json=payload)
                  if response.status_code == 200:
                      return {"translated_text": response.json().get("translated_text", ""), "provider": "sarvam"}
                  else:
                      return {"error": f"Sarvam API error: {response.text}", "provider": "sarvam"}
              except Exception as e:
                  return {"error": f"Error calling Sarvam API: {str(e)}", "provider": "sarvam"}
          
          def translate_with_google(self, text, target_lang="en"):
              """Translate text using Google Cloud Translation API with direct HTTP request"""
              if not self.google_api_key:
                  return {"error": "Google API key not set"}
              
              try:
                  # Using the translation API v2 with API key
                  params = {
                      "key": self.google_api_key,
                      "q": text,
                      "target": target_lang
                  }
                  
                  response = requests.post(self.google_translate_url, params=params)
                  if response.status_code == 200:
                      data = response.json()
                      translation = data.get("data", {}).get("translations", [{}])[0]
                      return {
                          "translated_text": translation.get("translatedText", ""),
                          "detected_source_language": translation.get("detectedSourceLanguage", ""),
                          "provider": "google"
                      }
                  else:
                      return {"error": f"Google API error: {response.text}", "provider": "google"}
              except Exception as e:
                  return {"error": f"Error calling Google Translation API: {str(e)}", "provider": "google"}
          
          def translate(self, text, language_info):
              """Translate text to English based on language detection info"""
              # If already English or unknown language, return as is
              if language_info["language_code"] == "en-IN" or language_info["language_code"] == "unknown":
                  return {"translated_text": text, "provider": "none"}
              
              # Handle mixed language content
              if language_info.get("is_mixed", False) and language_info.get("languages", []):
                  # Strategy for mixed language: 
                  # 1. If one of the languages is English, don't translate the entire text, as it might distort English portions
                  # 2. If no English but contains Indian languages, use Sarvam as it handles code-mixing better
                  # 3. Otherwise, use Google Translate for the primary detected language
                  
                  has_english = False
                  has_indian = False
                  
                  for lang in language_info.get("languages", []):
                      if lang["language_code"] == "en-IN" or lang["language_code"].startswith("en-"):
                          has_english = True
                      if lang.get("is_indian", False):
                          has_indian = True
                  
                  if has_english:
                      # Contains English - use Google for full text as it handles code-mixing well
                      return self.translate_with_google(text)
                  elif has_indian:
                      # Contains Indian languages - use Sarvam
                      # Use the highest confidence Indian language as source
                      indian_langs = [lang for lang in language_info.get("languages", []) if lang.get("is_indian", False)]
                      if indian_langs:
                          # Sort by confidence
                          indian_langs.sort(key=lambda x: x.get("confidence", 0), reverse=True)
                          source_lang = indian_langs[0]["language_code"]
                          return self.translate_with_sarvam(text, source_lang)
                      else:
                          # Fallback to primary language
                          if language_info["is_indian"]:
                              return self.translate_with_sarvam(text, language_info["language_code"])
                          else:
                              return self.translate_with_google(text)
                  else:
                      # No English, no Indian languages - use Google for primary language
                      return self.translate_with_google(text)
              else:
                  # Not mixed language - use standard approach
                  if language_info["is_indian"]:
                      # Use Sarvam AI for Indian languages
                      return self.translate_with_sarvam(text, language_info["language_code"])
                  else:
                      # Use Google for other languages
                      return self.translate_with_google(text)

      This Translation Service is like a smart translator that knows how to:

      • Detect what language the text is written in,
      • Choose the best translation provider depending on the language (especially for Indian languages),
      • And then translate the text into English.

      It supports mixed-language content (such as Hindi-English in one sentence) and uses either Google Translate or Sarvam AI, a translation service designed for Indian languages.

      Now, let us understand the key methods in a step-by-step manner:

      1. Translating Using Google Translate

      def translate_with_google(...)
      

      This function uses Google Translate:

      • It sends the text, asks for English as the target language, and gets a translation back.
      • It also detects the source language automatically.
      • If successful, it returns the translated text and the detected original language.
      • If there’s an error, it returns a message saying what went wrong.

      Best For: Non-Indian languages (like Spanish, French, Chinese) and content that is not mixed with English.

      2. Main Translation Logic

      def translate(self, text, language_info)
      

      This is the decision-maker. Here’s how it works:

      Case 1: No Translation Needed

      If the text is already in English or the language is unknown, it simply returns the original text.

      Case 2: Mixed Language (e.g., Hindi + English)

      If the text contains more than one language:

      • ✅ If one part is English → use Google Translate (it’s good with mixed languages).
      • ✅ If it includes Indian languages only → use Sarvam AI (better at handling Indian content).
      • ✅ If it’s neither English nor Indian → use Google Translate.

      The service checks how confident it is about each language in the mix and chooses the most likely one to translate from.

      Case 3: Single Language

      If the text is only in one language:

      • ✅ If it’s an Indian language (like Bengali, Tamil, or Marathi), use Sarvam AI.
      • ✅ If it’s any other language, use Google Translate.

      So, we’ve done it.

      I’ve included the complete working solutions for you in the GitHub Link.

      We’ll cover the detailed performance testing, Optimized configurations & many other useful details in our next post.

      Till then, Happy Avenging! 🙂

      Real-time video summary assistance App – Part 1

      Today, we’ll discuss another topic in our two-part series. We will understand the importance of the MCP protocol for communicating between agents.

      This will be an in-depth highly technical as well as depicting using easy-to-understand visuals.

      But, before that, let us understand the demo first.

      Isn’t it exciting?


      Let us first understand in easy language about the MCP protocol.

      MCP (Multi-Agent Communication Protocol) is a custom message exchange system that facilitates structured and scalable communication among multiple AI agents operating within an application. These agents collaborate asynchronously or in real-time to complete complex tasks by sharing results, context, and commands through a common messaging layer.

      How MCP Protocol Helps:

      FeatureBenefit
      Agent-Oriented ArchitectureEach agent handles a focused task, improving modularity and scalability.
      Event-Driven Message PassingAgents communicate based on triggers, not polling—leading to faster and efficient responses.
      Structured Communication FormatAll messages follow a standard format (e.g., JSON) with metadata for sender, recipient, type, and payload.
      State PreservationAgents maintain context across messages using memory (e.g., ConversationBufferMemory) to ensure coherence.

      How It Works (Step-by-Step):

      • 📥 User uploads or streams a video.
      • 🧑‍💻 MCP Protocol triggers the Transcription Agent to start converting audio into text.
      • 🌐 Translation Agent receives this text (if a different language is needed).
      • 🧾 Summarization Agent receives the translated or original transcript and generates a concise summary.
      • 📚 Research Agent checks for references or terminology used in the video.
      • 📄 Documentation Agent compiles the output into a structured report.
      • 🔁 All communication between agents flows through MCP, ensuring consistent message delivery and coordination.

      Now, let us understand the solution that we intend to implement for our solutions:

      This app provides live summarization and contextual insights from videos such as webinars, interviews, or YouTube recordings using multiple cooperating AI agents. These agents may include:

      • Transcription Agent: Converts spoken words to text.
      • Translation Agent: Translates text to different languages (if needed).
      • Summarization Agent: Generates concise summaries.
      • Research Agent: Finds background or supplementary data related to the discussion.
      • Documentation Agent: Converts outputs into structured reports or learning materials.

      We need to understand one more thing before deep diving into the code. Part of your conversation may be mixed, like part Hindi & part English. So, in that case, it will break the sentences into chunks & then convert all of them into the same language. Hence, the following rules are applied while translating the sentences –


      Now, we will go through the basic frame of the system & try to understand how it fits all the principles that we discussed above for this particular solution mapped against the specific technology –

      1. Documentation Agent built with the LangChain framework
      2. Research Agent built with the AutoGen framework
      3. MCP Broker for seamless communication between agents

      Let us understand from the given picture the flow of the process that our app is trying to implement –


      Great! So, now, we’ll focus on some of the key Python scripts & go through their key features.

      But, before that, we share the group of scripts that belong to specific tasks.

      • clsMCPMessage.py
      • clsMCPBroker.py
      • clsYouTubeVideoProcessor.py
      • clsLanguageDetector.py
      • clsTranslationAgent.py
      • clsTranslationService.py
      • clsDocumentationAgent.py
      • clsResearchAgent.py

      Now, we’ll review some of the script in this post, along with the next post, as a continuation from this post.

      class clsMCPMessage(BaseModel):
          """Message format for MCP protocol"""
          id: str = Field(default_factory=lambda: str(uuid.uuid4()))
          timestamp: float = Field(default_factory=time.time)
          sender: str
          receiver: str
          message_type: str  # "request", "response", "notification"
          content: Dict[str, Any]
          reply_to: Optional[str] = None
          conversation_id: str
          metadata: Dict[str, Any] = {}
          
      class clsMCPBroker:
          """Message broker for MCP protocol communication between agents"""
          
          def __init__(self):
              self.message_queues: Dict[str, queue.Queue] = {}
              self.subscribers: Dict[str, List[str]] = {}
              self.conversation_history: Dict[str, List[clsMCPMessage]] = {}
          
          def register_agent(self, agent_id: str) -> None:
              """Register an agent with the broker"""
              if agent_id not in self.message_queues:
                  self.message_queues[agent_id] = queue.Queue()
                  self.subscribers[agent_id] = []
          
          def subscribe(self, subscriber_id: str, publisher_id: str) -> None:
              """Subscribe an agent to messages from another agent"""
              if publisher_id in self.subscribers:
                  if subscriber_id not in self.subscribers[publisher_id]:
                      self.subscribers[publisher_id].append(subscriber_id)
          
          def publish(self, message: clsMCPMessage) -> None:
              """Publish a message to its intended receiver"""
              # Store in conversation history
              if message.conversation_id not in self.conversation_history:
                  self.conversation_history[message.conversation_id] = []
              self.conversation_history[message.conversation_id].append(message)
              
              # Deliver to direct receiver
              if message.receiver in self.message_queues:
                  self.message_queues[message.receiver].put(message)
              
              # Deliver to subscribers of the sender
              for subscriber in self.subscribers.get(message.sender, []):
                  if subscriber != message.receiver:  # Avoid duplicates
                      self.message_queues[subscriber].put(message)
          
          def get_message(self, agent_id: str, timeout: Optional[float] = None) -> Optional[clsMCPMessage]:
              """Get a message for the specified agent"""
              try:
                  return self.message_queues[agent_id].get(timeout=timeout)
              except (queue.Empty, KeyError):
                  return None
          
          def get_conversation_history(self, conversation_id: str) -> List[clsMCPMessage]:
              """Get the history of a conversation"""
              return self.conversation_history.get(conversation_id, [])

      Imagine a system where different virtual agents (like robots or apps) need to talk to each other. To do that, they send messages back and forth—kind of like emails or text messages. This code is responsible for:

      • Making sure those messages are properly written (like filling out all parts of a form).
      • Making sure messages are delivered to the right people.
      • Keeping a record of conversations so you can go back and review what was said.

      This part (clsMCPMessage) is like a template or a form that every message needs to follow. Each message has:

      • ID: A unique number so every message is different (like a serial number).
      • Time Sent: When the message was created.
      • Sender & Receiver: Who sent the message and who is supposed to receive it.
      • Type of Message: Is it a request, a response, or just a notification?
      • Content: The actual information or question the message is about.
      • Reply To: If this message is answering another one, this tells which one.
      • Conversation ID: So we know which group of messages belongs to the same conversation.
      • Extra Info (Metadata): Any other small details that might help explain the message.

      This (clsMCPBroker) is the system (or “post office”) that makes sure messages get to where they’re supposed to go. Here’s what it does:

      1. Registering an Agent

      • Think of this like signing up a new user in the system.
      • Each agent gets their own personal mailbox (called a “message queue”) so others can send them messages.

      2. Subscribing to Another Agent

      • If Agent A wants to receive copies of messages from Agent B, they can “subscribe” to B.
      • This is like signing up for B’s newsletter—whenever B sends something, A gets a copy.

      3. Sending a Message

      • When someone sends a message:
        • It is saved into a conversation history (like keeping emails in your inbox).
        • It is delivered to the main person it was meant for.
        • And, if anyone subscribed to the sender, they get a copy too—unless they’re already the main receiver (to avoid sending duplicates).

      4. Receiving Messages

      • Each agent can check their personal mailbox to see if they got any new messages.
      • If there are no messages, they’ll either wait for some time or move on.

      5. Viewing Past Conversations

      • You can look up all messages that were part of a specific conversation.
      • This is helpful for remembering what was said earlier.

      In systems where many different smart tools or services need to work together and communicate, this kind of communication system makes sure everything is:

      • Organized
      • Delivered correctly
      • Easy to trace back when needed

      So, in this post, we’ll finish it here. We’ll cover the rest of the post in the next post.

      I’ll bring some more exciting topics in the coming days from the Python verse.

      Till then, Happy Avenging!  🙂