Realtime reading from a Streaming using Computer Vision

This week we’re going to extend one of our earlier posts & trying to read an entire text from streaming using computer vision. If you want to view the previous post, please click the following link.

But, before we proceed, why don’t we view the demo first?

Demo

Architecture:

Let us understand the architecture flow –

Architecture flow

The above diagram shows that the application, which uses the Open-CV, analyzes individual frames from the source & extracts the complete text within the video & displays it on top of the target screen besides prints the same in the console.

Python Packages:

pip install imutils==0.5.4
pip install matplotlib==3.5.2
pip install numpy==1.21.6
pip install opencv-contrib-python==4.6.0.66
pip install opencv-contrib-python-headless==4.6.0.66
pip install opencv-python==4.6.0.66
pip install opencv-python-headless==4.6.0.66
pip install pandas==1.3.5
pip install Pillow==9.1.1
pip install pytesseract==0.3.9
pip install python-dateutil==2.8.2

CODE:

Let us now understand the code. For this use case, we will only discuss three python scripts. However, we need more than these three. However, we have already discussed them in some of the early posts. Hence, we will skip them here.

  • clsReadingTextFromStream.py (This is the main class of python script that will extract the text from the WebCAM streaming in real-time.)


##################################################
#### Written By: SATYAKI DE ####
#### Written On: 22-Jul-2022 ####
#### Modified On 25-Jul-2022 ####
#### ####
#### Objective: This is the main class of ####
#### python script that will invoke the ####
#### extraction of texts from a WebCAM. ####
#### ####
##################################################
# Importing necessary packages
from clsConfig import clsConfig as cf
from imutils.object_detection import non_max_suppression
import numpy as np
import pytesseract
import imutils
import time
import cv2
import time
###############################################
### Global Section ###
###############################################
# Two output layer names for the text detector model
lNames = cf.conf['LAYER_DET']
# Tesseract OCR text param values
strVal = "-l " + str(cf.conf['LANG']) + " –oem " + str(cf.conf['OEM_VAL']) + " –psm " + str(cf.conf['PSM_VAL']) + ""
config = (strVal)
###############################################
### End of Global Section ###
###############################################
class clsReadingTextFromStream:
def __init__(self):
self.sep = str(cf.conf['SEP'])
self.Curr_Path = str(cf.conf['INIT_PATH'])
self.CacheL = int(cf.conf['CACHE_LIM'])
self.modelPath = str(cf.conf['MODEL_PATH']) + str(cf.conf['MODEL_FILE_NAME'])
self.minConf = float(cf.conf['MIN_CONFIDENCE'])
self.wt = int(cf.conf['WIDTH'])
self.ht = int(cf.conf['HEIGHT'])
self.pad = float(cf.conf['PADDING'])
self.title = str(cf.conf['TITLE'])
self.Otitle = str(cf.conf['ORIG_TITLE'])
self.drawTag = cf.conf['DRAW_TAG']
self.aRange = int(cf.conf['ASCII_RANGE'])
self.sParam = cf.conf['SUBTRACT_PARAM']
def findBoundBox(self, boxes, res, rW, rH, orig, origW, origH, pad):
try:
# Loop over the bounding boxes
for (spX, spY, epX, epY) in boxes:
# Scale the bounding box coordinates based on the respective
# ratios
spX = int(spX * rW)
spY = int(spY * rH)
epX = int(epX * rW)
epY = int(epY * rH)
# To obtain a better OCR of the text we can potentially
# apply a bit of padding surrounding the bounding box.
# And, computing the deltas in both the x and y directions
dX = int((epX spX) * pad)
dY = int((epY spY) * pad)
# Apply padding to each side of the bounding box, respectively
spX = max(0, spX dX)
spY = max(0, spY dY)
epX = min(origW, epX + (dX * 2))
epY = min(origH, epY + (dY * 2))
# Extract the actual padded ROI
roi = orig[spY:epY, spX:epX]
# Choose the proper OCR Config
text = pytesseract.image_to_string(roi, config=config)
# Add the bounding box coordinates and OCR'd text to the list
# of results
res.append(((spX, spY, epX, epY), text))
# Sort the results bounding box coordinates from top to bottom
res = sorted(res, key=lambda r:r[0][1])
return res
except Exception as e:
x = str(e)
print(x)
return res
def predictText(self, imgScore, imgGeo):
try:
minConf = self.minConf
# Initializing the bounding box rectangles & confidence score by
# extracting the rows & columns from the imgScore volume.
(numRows, numCols) = imgScore.shape[2:4]
rects = []
confScore = []
for y in range(0, numRows):
# Extract the imgScore probabilities to derive potential
# bounding box coordinates that surround text
imgScoreData = imgScore[0, 0, y]
xVal0 = imgGeo[0, 0, y]
xVal1 = imgGeo[0, 1, y]
xVal2 = imgGeo[0, 2, y]
xVal3 = imgGeo[0, 3, y]
anglesData = imgGeo[0, 4, y]
for x in range(0, numCols):
# If our score does not have sufficient probability,
# ignore it
if imgScoreData[x] < minConf:
continue
# Compute the offset factor as our resulting feature
# maps will be 4x smaller than the input frame
(offX, offY) = (x * 4.0, y * 4.0)
# Extract the rotation angle for the prediction and
# then compute the sin and cosine
angle = anglesData[x]
cos = np.cos(angle)
sin = np.sin(angle)
# Derive the width and height of the bounding box from
# imgGeo
h = xVal0[x] + xVal2[x]
w = xVal1[x] + xVal3[x]
# Compute both the starting and ending (x, y)-coordinates
# for the text prediction bounding box
epX = int(offX + (cos * xVal1[x]) + (sin * xVal2[x]))
epY = int(offY (sin * xVal1[x]) + (cos * xVal2[x]))
spX = int(epX w)
spY = int(epY h)
# Adding bounding box coordinates and probability score
# to the respective lists
rects.append((spX, spY, epX, epY))
confScore.append(imgScoreData[x])
# return a tuple of the bounding boxes and associated confScore
return (rects, confScore)
except Exception as e:
x = str(e)
print(x)
rects = []
confScore = []
return (rects, confScore)
def processStream(self, debugInd, var):
try:
sep = self.sep
Curr_Path = self.Curr_Path
CacheL = self.CacheL
modelPath = self.modelPath
minConf = self.minConf
wt = self.wt
ht = self.ht
pad = self.pad
title = self.title
Otitle = self.Otitle
drawTag = self.drawTag
aRange = self.aRange
sParam = self.sParam
val = 0
# Initialize the video stream and allow the camera sensor to warm up
print("[INFO] Starting video stream…")
cap = cv2.VideoCapture(0)
# Loading the pre-trained text detector
print("[INFO] Loading Text Detector…")
net = cv2.dnn.readNet(modelPath)
# Loop over the frames from the video stream
while True:
try:
# Grab the frame from our video stream and resize it
success, frame = cap.read()
orig = frame.copy()
(origH, origW) = frame.shape[:2]
# Setting new width and height and then determine the ratio in change
# for both the width and height
(newW, newH) = (wt, ht)
rW = origW / float(newW)
rH = origH / float(newH)
# Resize the frame and grab the new frame dimensions
frame = cv2.resize(frame, (newW, newH))
(H, W) = frame.shape[:2]
# Construct a blob from the frame and then perform a forward pass of
# the model to obtain the two output layer sets
blob = cv2.dnn.blobFromImage(frame, 1.0, (W, H), sParam, swapRB=True, crop=False)
net.setInput(blob)
(confScore, imgGeo) = net.forward(lNames)
# Decode the predictions, then apply non-maxima suppression to
# suppress weak, overlapping bounding boxes
(rects, confidences) = self.predictText(confScore, imgGeo)
boxes = non_max_suppression(np.array(rects), probs=confidences)
# Initialize the list of results
res = []
# Getting BoundingBox boundaries
res = self.findBoundBox(boxes, res, rW, rH, orig, origW, origH, pad)
for ((spX, spY, epX, epY), text) in res:
# Display the text OCR by using Tesseract APIs
print("Reading Text::")
print("=" *60)
print(text)
print("=" *60)
# Removing the non-ASCII text so it can draw the text on the frame
# using OpenCV, then draw the text and a bounding box surrounding
# the text region of the input frame
text = "".join([c if ord(c) < aRange else "" for c in text]).strip()
output = orig.copy()
cv2.rectangle(output, (spX, spY), (epX, epY), drawTag, 2)
cv2.putText(output, text, (spX, spY 20), cv2.FONT_HERSHEY_SIMPLEX, 1.2, drawTag, 3)
# Show the output frame
cv2.imshow(title, output)
#cv2.imshow(Otitle, frame)
# If the `q` key was pressed, break from the loop
if cv2.waitKey(1) == ord('q'):
break
val = 0
except Exception as e:
x = str(e)
print(x)
val = 1
# Performing cleanup at the end
cap.release()
cv2.destroyAllWindows()
return val
except Exception as e:
x = str(e)
print('Error:', x)
return 1

Please find the key snippet from the above script –

# Two output layer names for the text detector model

lNames = cf.conf['LAYER_DET']

# Tesseract OCR text param values

strVal = "-l " + str(cf.conf['LANG']) + " --oem " + str(cf.conf['OEM_VAL']) + " --psm " + str(cf.conf['PSM_VAL']) + ""
config = (strVal)

The first line contains the two output layers’ names for the text detector model. Among them, the first one indicates the outcome possibilities & the second one use to derive the bounding box coordinates of the predicted text.

The second line contains various options for the tesseract APIs. You need to understand the opportunities in detail to make them work. These are the essential options for our use case –

  • Language – The intended language, for example, English, Spanish, Hindi, Bengali, etc.
  • OEM flag – In this case, the application will use 4 to indicate LSTM neural net model for OCR.
  • OEM Value – In this case, the selected value is 7, indicating that the application treats the ROI as a single line of text.

For more details, please refer to the config file.

print("[INFO] Loading Text Detector...")
net = cv2.dnn.readNet(modelPath)

The above lines bring the already created model & load it to memory for evaluation.

# Setting new width and height and then determine the ratio in change
# for both the width and height
(newW, newH) = (wt, ht)
rW = origW / float(newW)
rH = origH / float(newH)

# Resize the frame and grab the new frame dimensions
frame = cv2.resize(frame, (newW, newH))
(H, W) = frame.shape[:2]

# Construct a blob from the frame and then perform a forward pass of
# the model to obtain the two output layer sets
blob = cv2.dnn.blobFromImage(frame, 1.0, (W, H), sParam, swapRB=True, crop=False)
net.setInput(blob)
(confScore, imgGeo) = net.forward(lNames)

# Decode the predictions, then apply non-maxima suppression to
# suppress weak, overlapping bounding boxes
(rects, confidences) = self.predictText(confScore, imgGeo)
boxes = non_max_suppression(np.array(rects), probs=confidences)

The above lines are more of preparing individual frames to get the bounding box by resizing the height & width followed by a forward pass of the model to obtain two output layer sets. And then apply the non-maxima suppression to remove the weak, overlapping bounding box by interpreting the prediction. In short, this will identify the potential text region & put the bounding box surrounding it.

# Initialize the list of results
res = []

# Getting BoundingBox boundaries
res = self.findBoundBox(boxes, res, rW, rH, orig, origW, origH, pad)

The above function will create the bounding box surrounding the predicted text regions. Also, we will capture the expected text inside the result variable.

for (spX, spY, epX, epY) in boxes:
  # Scale the bounding box coordinates based on the respective
  # ratios
  spX = int(spX * rW)
  spY = int(spY * rH)
  epX = int(epX * rW)
  epY = int(epY * rH)

  # To obtain a better OCR of the text we can potentially
  # apply a bit of padding surrounding the bounding box.
  # And, computing the deltas in both the x and y directions
  dX = int((epX - spX) * pad)
  dY = int((epY - spY) * pad)

  # Apply padding to each side of the bounding box, respectively
  spX = max(0, spX - dX)
  spY = max(0, spY - dY)
  epX = min(origW, epX + (dX * 2))
  epY = min(origH, epY + (dY * 2))

  # Extract the actual padded ROI
  roi = orig[spY:epY, spX:epX]

Now, the application will scale the bounding boxes based on the previously computed ratio for actual text recognition. In this process, the application also padded the bounding boxes & then extracted the padded region of interest.

# Choose the proper OCR Config
text = pytesseract.image_to_string(roi, config=config)

# Add the bounding box coordinates and OCR'd text to the list
# of results
res.append(((spX, spY, epX, epY), text))

Using OCR options, the application extracts the text within the video frame & adds that to the res list.

# Sort the results bounding box coordinates from top to bottom
res = sorted(res, key=lambda r:r[0][1])

It then sends a sorted output to the primary calling functions.

for ((spX, spY, epX, epY), text) in res:
  # Display the text OCR by using Tesseract APIs
  print("Reading Text::")
  print("=" *60)
  print(text)
  print("=" *60)

  # Removing the non-ASCII text so it can draw the text on the frame
  # using OpenCV, then draw the text and a bounding box surrounding
  # the text region of the input frame
  text = "".join([c if ord(c) < aRange else "" for c in text]).strip()
  output = orig.copy()

  cv2.rectangle(output, (spX, spY), (epX, epY), drawTag, 2)
  cv2.putText(output, text, (spX, spY - 20), cv2.FONT_HERSHEY_SIMPLEX, 1.2, drawTag, 3)

  # Show the output frame
  cv2.imshow(title, output)

Finally, it fetches the potential text region along with the text & then prints on top of the source video. Also, it removed some non-printable characters during this time to avoid any cryptic texts.

  • readingVideo.py (Main calling script.)


#####################################################
#### Written By: SATYAKI DE ####
#### Written On: 22-Jul-2022 ####
#### Modified On 25-Jul-2022 ####
#### ####
#### Objective: This is the main calling ####
#### python script that will invoke the ####
#### clsReadingTextFromStream class to initiate ####
#### the reading capability in real-time ####
#### & display text via Web-CAM. ####
#####################################################
# We keep the setup code in a different class as shown below.
import clsReadingTextFromStream as rtfs
from clsConfig import clsConfig as cf
import datetime
import logging
###############################################
### Global Section ###
###############################################
# Instantiating all the main class
x1 = rtfs.clsReadingTextFromStream()
###############################################
### End of Global Section ###
###############################################
def main():
try:
# Other useful variables
debugInd = 'Y'
var = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
var1 = datetime.datetime.now()
print('Start Time: ', str(var))
# End of useful variables
# Initiating Log Class
general_log_path = str(cf.conf['LOG_PATH'])
# Enabling Logging Info
logging.basicConfig(filename=general_log_path + 'readingTextFromVideo.log', level=logging.INFO)
print('Started reading text from videos!')
# Execute all the pass
r1 = x1.processStream(debugInd, var)
if (r1 == 0):
print('Successfully read text from the Live Stream!')
else:
print('Failed to read text from the Live Stream!')
var2 = datetime.datetime.now()
c = var2 var1
minutes = c.total_seconds() / 60
print('Total difference in minutes: ', str(minutes))
print('End Time: ', str(var1))
except Exception as e:
x = str(e)
print('Error: ', x)
if __name__ == "__main__":
main()

view raw

readingVideo.py

hosted with ❤ by GitHub

Please find the key snippet –

# Instantiating all the main class

x1 = rtfs.clsReadingTextFromStream()

# Execute all the pass
r1 = x1.processStream(debugInd, var)

if (r1 == 0):
    print('Successfully read text from the Live Stream!')
else:
    print('Failed to read text from the Live Stream!')

The above lines instantiate the main calling class & then invoke the function to get the desired extracted text from the live streaming video if that is successful.

FOLDER STRUCTURE:

Here is the folder structure that contains all the files & directories in MAC O/S –

You will get the complete codebase in the following Github link.

Unfortunately, I cannot upload the model due to it’s size. I will share on the need basis.

I’ll bring some more exciting topic in the coming days from the Python verse. Please share & subscribe my post & let me know your feedback.

Till then, Happy Avenging! 🙂

Note: All the data & scenario posted here are representational data & scenarios & available over the internet & for educational purpose only. Some of the images (except my photo) that we’ve used are available over the net. We don’t claim the ownership of these images. There is an always room for improvement & especially the prediction quality.

Real-time augmented reality (AR) using Python-based Computer Vision

Hi Team,

Today, I’m going to discuss another Computer Vision installment. I’ll discuss how to implement Augmented Reality using Open-CV Computer Vision with full audio. We will be using part of a Bengali OTT Series called “Feludar Goendagiri” entirely for educational purposes & also as a tribute to the great legendary director, late Satyajit Roy. To know more about him, please click the following link.

Why don’t we see the demo first before jumping into the technical details?


Demo

Architecture:

Let us understand the architecture –

Process Flow

The above diagram shows that the application, which uses the Open-CV, analyzes individual frames from the source & blends that with the video trailer. Finally, it creates another video by correctly mixing the source audio.

Python Packages:

Following are the python packages that are necessary to develop this brilliant use case –

pip install opencv-python
pip install pygame

CODE:

Let us now understand the code. For this use case, we will only discuss three python scripts. However, we need more than these three. However, we have already discussed them in some of the early posts. Hence, we will skip them here.

  • clsAugmentedReality.py (This is the main class of python script that will embed the source video with the WebCAM streams in real-time.)


##################################################
#### Written By: SATYAKI DE ####
#### Written On: 20-Jun-2022 ####
#### Modified On 25-Jun-2022 ####
#### ####
#### Objective: This is the main class of ####
#### python script that will embed the source ####
#### video with the WebCAM streams in ####
#### real-time. ####
##################################################
# Importing necessary packages
import numpy as np
import cv2
from clsConfig import clsConfig as cf
# Initialize our cached reference points
CACHED_REF_PTS = None
class clsAugmentedReality:
def __init__(self):
self.TOP_LEFT_X = int(cf.conf['TOP_LEFT_X'])
self.TOP_LEFT_Y = int(cf.conf['TOP_LEFT_Y'])
self.TOP_RIGHT_X = int(cf.conf['TOP_RIGHT_X'])
self.TOP_RIGHT_Y = int(cf.conf['TOP_RIGHT_Y'])
self.BOTTOM_RIGHT_X = int(cf.conf['BOTTOM_RIGHT_X'])
self.BOTTOM_RIGHT_Y = int(cf.conf['BOTTOM_RIGHT_Y'])
self.BOTTOM_LEFT_X = int(cf.conf['BOTTOM_LEFT_X'])
self.BOTTOM_LEFT_Y = int(cf.conf['BOTTOM_LEFT_Y'])
def getWarpImages(self, frame, source, cornerIDs, arucoDict, arucoParams, zoomFlag, useCache=False):
try:
# Assigning values
TOP_LEFT_X = self.TOP_LEFT_X
TOP_LEFT_Y = self.TOP_LEFT_Y
TOP_RIGHT_X = self.TOP_RIGHT_X
TOP_RIGHT_Y = self.TOP_RIGHT_Y
BOTTOM_RIGHT_X = self.BOTTOM_RIGHT_X
BOTTOM_RIGHT_Y = self.BOTTOM_RIGHT_Y
BOTTOM_LEFT_X = self.BOTTOM_LEFT_X
BOTTOM_LEFT_Y = self.BOTTOM_LEFT_Y
# Grab a reference to our cached reference points
global CACHED_REF_PTS
if source is None:
raise
# Grab the width and height of the frame and source image,
# respectively
# Extracting Frame from Camera
# Exracting Source from Video
(imgH, imgW) = frame.shape[:2]
(srcH, srcW) = source.shape[:2]
# Detect Aruco markers in the input frame
(corners, ids, rejected) = cv2.aruco.detectMarkers(frame, arucoDict, parameters=arucoParams)
print('Ids: ', str(ids))
print('Rejected: ', str(rejected))
# if we *did not* find our four ArUco markers, initialize an
# empty IDs list, otherwise flatten the ID list
print('Detecting Corners: ', str(len(corners)))
ids = np.array([]) if len(corners) != 4 else ids.flatten()
# Initialize our list of reference points
refPts = []
refPtTL1 = []
# Loop over the IDs of the ArUco markers in Top-Left, Top-Right,
# Bottom-Right, and Bottom-Left order
for i in cornerIDs:
# Grab the index of the corner with the current ID
j = np.squeeze(np.where(ids == i))
# If we receive an empty list instead of an integer index,
# then we could not find the marker with the current ID
if j.size == 0:
continue
# Otherwise, append the corner (x, y)-coordinates to our list
# of reference points
corner = np.squeeze(corners[j])
refPts.append(corner)
# Check to see if we failed to find the four ArUco markers
if len(refPts) != 4:
# If we are allowed to use cached reference points, fall
# back on them
if useCache and CACHED_REF_PTS is not None:
refPts = CACHED_REF_PTS
# Otherwise, we cannot use the cache and/or there are no
# previous cached reference points, so return early
else:
return None
# If we are allowed to use cached reference points, then update
# the cache with the current set
if useCache:
CACHED_REF_PTS = refPts
# Unpack our Aruco reference points and use the reference points
# to define the Destination transform matrix, making sure the
# points are specified in Top-Left, Top-Right, Bottom-Right, and
# Bottom-Left order
(refPtTL, refPtTR, refPtBR, refPtBL) = refPts
dstMat = [refPtTL[0], refPtTR[1], refPtBR[2], refPtBL[3]]
dstMat = np.array(dstMat)
# For zoom option recalculating all the 4 points
refPtTL1_L_X = refPtTL[0][0]TOP_LEFT_X
refPtTL1_L_Y = refPtTL[0][1]TOP_LEFT_Y
refPtTL1.append((refPtTL1_L_X,refPtTL1_L_Y))
refPtTL1_R_X = refPtTL[1][0]+TOP_RIGHT_X
refPtTL1_R_Y = refPtTL[1][1]+TOP_RIGHT_Y
refPtTL1.append((refPtTL1_R_X,refPtTL1_R_Y))
refPtTD1_L_X = refPtTL[2][0]+BOTTOM_RIGHT_X
refPtTD1_L_Y = refPtTL[2][1]+BOTTOM_RIGHT_Y
refPtTL1.append((refPtTD1_L_X,refPtTD1_L_Y))
refPtTD1_R_X = refPtTL[3][0]BOTTOM_LEFT_X
refPtTD1_R_Y = refPtTL[3][1]+BOTTOM_LEFT_Y
refPtTL1.append((refPtTD1_R_X,refPtTD1_R_Y))
dstMatMod = [refPtTL1[0], refPtTL1[1], refPtTL1[2], refPtTL1[3]]
dstMatMod = np.array(dstMatMod)
# Define the transform matrix for the *source* image in Top-Left,
# Top-Right, Bottom-Right, and Bottom-Left order
srcMat = np.array([[0, 0], [srcW, 0], [srcW, srcH], [0, srcH]])
# Compute the homography matrix and then warp the source image to
# the destination based on the homography depending upon the
# zoom flag
if zoomFlag == 1:
(H, _) = cv2.findHomography(srcMat, dstMat)
else:
(H, _) = cv2.findHomography(srcMat, dstMatMod)
warped = cv2.warpPerspective(source, H, (imgW, imgH))
# Construct a mask for the source image now that the perspective
# warp has taken place (we'll need this mask to copy the source
# image into the destination)
mask = np.zeros((imgH, imgW), dtype="uint8")
if zoomFlag == 1:
cv2.fillConvexPoly(mask, dstMat.astype("int32"), (255, 255, 255), cv2.LINE_AA)
else:
cv2.fillConvexPoly(mask, dstMatMod.astype("int32"), (255, 255, 255), cv2.LINE_AA)
# This optional step will give the source image a black
# border surrounding it when applied to the source image, you
# can apply a dilation operation
rect = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
mask = cv2.dilate(mask, rect, iterations=2)
# Create a three channel version of the mask by stacking it
# depth-wise, such that we can copy the warped source image
# into the input image
maskScaled = mask.copy() / 255.0
maskScaled = np.dstack([maskScaled] * 3)
# Copy the warped source image into the input image by
# (1) Multiplying the warped image and masked together,
# (2) Then multiplying the original input image with the
# mask (giving more weight to the input where there
# are not masked pixels), and
# (3) Adding the resulting multiplications together
warpedMultiplied = cv2.multiply(warped.astype("float"), maskScaled)
imageMultiplied = cv2.multiply(frame.astype(float), 1.0 maskScaled)
output = cv2.add(warpedMultiplied, imageMultiplied)
output = output.astype("uint8")
# Return the output frame to the calling function
return output
except Exception as e:
# Delibarately raising the issue
# That way the control goes to main calling methods
# exception section
raise

Please find the key snippet from the above script –

(imgH, imgW) = frame.shape[:2]
(srcH, srcW) = source.shape[:2]

# Detect Aruco markers in the input frame
(corners, ids, rejected) = cv2.aruco.detectMarkers(frame, arucoDict, parameters=arucoParams)

Identifying the Aruco markers are key here. The above lines help the program detect all four corners.

However, let us discuss more on the Aruco markers & strategies that I’ve used for several different surfaces.

As you can see, the right-hand side Aruco marker is tiny compared to the left one. Hence, that one will be ideal for a curve surface like Coffee Mug, Bottle rather than a flat surface.

Also, we’ve demonstrated the zoom capability with the smaller Aruco marker that will Augment almost double the original surface area.

Let us understand why we need that; as you know, any spherical surface like a bottle is round-shaped. Hence, detecting relatively more significant Aruco markers in four corners will be difficult for any camera to identify.

Hence, we need a process where close four corners can be extrapolated mathematically to relatively larger projected areas easily detectable by any WebCAM.

Let’s observe the following figure –

Simulated Extrapolated corners

As you can see that the original position of the four corners is represented using the following points, i.e., (x1, y1), (x2, y2), (x3, y3) & (x4, y4).

And these positions are very close to each other. Hence, it will be easier for the camera to detect all the points (like a plain surface) without many retries.

And later, you can add specific values of x & y to them to get the derived four corners as shown in the above figures through the following points, i.e. (x1.1, y1.1), (x2.1, y2.1), (x3.1, y3.1) & (x4.1, y4.1).

# Loop over the IDs of the ArUco markers in Top-Left, Top-Right,
# Bottom-Right, and Bottom-Left order
for i in cornerIDs:
  # Grab the index of the corner with the current ID
  j = np.squeeze(np.where(ids == i))

  # If we receive an empty list instead of an integer index,
  # then we could not find the marker with the current ID
  if j.size == 0:
    continue

  # Otherwise, append the corner (x, y)-coordinates to our list
  # of reference points
  corner = np.squeeze(corners[j])
  refPts.append(corner)

# Check to see if we failed to find the four ArUco markers
if len(refPts) != 4:
  # If we are allowed to use cached reference points, fall
  # back on them
  if useCache and CACHED_REF_PTS is not None:
    refPts = CACHED_REF_PTS

  # Otherwise, we cannot use the cache and/or there are no
  # previous cached reference points, so return early
  else:
    return None

# If we are allowed to use cached reference points, then update
# the cache with the current set
if useCache:
  CACHED_REF_PTS = refPts

# Unpack our Aruco reference points and use the reference points
# to define the Destination transform matrix, making sure the
# points are specified in Top-Left, Top-Right, Bottom-Right, and
# Bottom-Left order
(refPtTL, refPtTR, refPtBR, refPtBL) = refPts
dstMat = [refPtTL[0], refPtTR[1], refPtBR[2], refPtBL[3]]
dstMat = np.array(dstMat)

In the above snippet, the application will scan through all the points & try to detect Aruco markers & then create a list of reference points, which will later be used to define the destination transformation matrix.

# For zoom option recalculating all the 4 points
refPtTL1_L_X = refPtTL[0][0]-TOP_LEFT_X
refPtTL1_L_Y = refPtTL[0][1]-TOP_LEFT_Y

refPtTL1.append((refPtTL1_L_X,refPtTL1_L_Y))

refPtTL1_R_X = refPtTL[1][0]+TOP_RIGHT_X
refPtTL1_R_Y = refPtTL[1][1]+TOP_RIGHT_Y

refPtTL1.append((refPtTL1_R_X,refPtTL1_R_Y))

refPtTD1_L_X = refPtTL[2][0]+BOTTOM_RIGHT_X
refPtTD1_L_Y = refPtTL[2][1]+BOTTOM_RIGHT_Y

refPtTL1.append((refPtTD1_L_X,refPtTD1_L_Y))

refPtTD1_R_X = refPtTL[3][0]-BOTTOM_LEFT_X
refPtTD1_R_Y = refPtTL[3][1]+BOTTOM_LEFT_Y

refPtTL1.append((refPtTD1_R_X,refPtTD1_R_Y))

dstMatMod = [refPtTL1[0], refPtTL1[1], refPtTL1[2], refPtTL1[3]]
dstMatMod = np.array(dstMatMod)

The above snippets calculate the revised points for the zoom-out capabilities as discussed in one of the earlier figures.

# Define the transform matrix for the *source* image in Top-Left,
# Top-Right, Bottom-Right, and Bottom-Left order
srcMat = np.array([[0, 0], [srcW, 0], [srcW, srcH], [0, srcH]])

The above snippet will create a transformation matrix for the video trailer.

# Compute the homography matrix and then warp the source image to
# the destination based on the homography depending upon the
# zoom flag
if zoomFlag == 1:
  (H, _) = cv2.findHomography(srcMat, dstMat)
else:
  (H, _) = cv2.findHomography(srcMat, dstMatMod)

warped = cv2.warpPerspective(source, H, (imgW, imgH))

# Construct a mask for the source image now that the perspective
# warp has taken place (we'll need this mask to copy the source
# image into the destination)
mask = np.zeros((imgH, imgW), dtype="uint8")
if zoomFlag == 1:
  cv2.fillConvexPoly(mask, dstMat.astype("int32"), (255, 255, 255), cv2.LINE_AA)
else:
  cv2.fillConvexPoly(mask, dstMatMod.astype("int32"), (255, 255, 255), cv2.LINE_AA)

# This optional step will give the source image a black
# border surrounding it when applied to the source image, you
# can apply a dilation operation
rect = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
mask = cv2.dilate(mask, rect, iterations=2)

# Create a three channel version of the mask by stacking it
# depth-wise, such that we can copy the warped source image
# into the input image
maskScaled = mask.copy() / 255.0
maskScaled = np.dstack([maskScaled] * 3)

# Copy the warped source image into the input image by
# (1) Multiplying the warped image and masked together,
# (2) Then multiplying the original input image with the
#     mask (giving more weight to the input where there
#     are not masked pixels), and
# (3) Adding the resulting multiplications together
warpedMultiplied = cv2.multiply(warped.astype("float"), maskScaled)
imageMultiplied = cv2.multiply(frame.astype(float), 1.0 - maskScaled)
output = cv2.add(warpedMultiplied, imageMultiplied)
output = output.astype("uint8")

Finally, depending upon the zoom flag, the application will create a warped image surrounded by an optionally black border.

  • clsEmbedVideoWithStream.py (This is the main class of python script that will invoke the clsAugmentedReality class to initiate augment reality after splitting the audio & video & then project them via the Web-CAM with a seamless broadcast.)


##################################################
#### Written By: SATYAKI DE ####
#### Written On: 22-Jun-2022 ####
#### Modified On 25-Jun-2022 ####
#### ####
#### Objective: This is the main class of ####
#### python script that will invoke the ####
#### clsAugmentedReality class to initiate ####
#### augment reality after splitting the ####
#### audio & video & then project them via ####
#### the Web-CAM with a seamless broadcast. ####
##################################################
# Importing necessary packages
import clsAugmentedReality as ar
from clsConfig import clsConfig as cf
from imutils.video import VideoStream
from collections import deque
import imutils
import time
import cv2
import subprocess
import os
import pygame
import time
import threading
import sys
###############################################
### Global Section ###
###############################################
# Instantiating the dependant class
x1 = ar.clsAugmentedReality()
###############################################
### End of Global Section ###
###############################################
class BreakLoop(Exception):
pass
class clsEmbedVideoWithStream:
def __init__(self):
self.sep = str(cf.conf['SEP'])
self.Curr_Path = str(cf.conf['INIT_PATH'])
self.FileName = str(cf.conf['FILE_NAME'])
self.CacheL = int(cf.conf['CACHE_LIM'])
self.FileName_1 = str(cf.conf['FILE_NAME_1'])
self.audioLen = int(cf.conf['audioLen'])
self.audioFreq = float(cf.conf['audioFreq'])
self.videoFrame = float(cf.conf['videoFrame'])
self.stopFlag=cf.conf['stopFlag']
self.zFlag=int(cf.conf['zoomFlag'])
self.title = str(cf.conf['TITLE'])
def playAudio(self, audioFile, audioLen, freq, stopFlag=False):
try:
pygame.mixer.init()
pygame.init()
pygame.mixer.music.load(audioFile)
pygame.mixer.music.set_volume(10)
val = int(audioLen)
i = 0
while i < val:
pygame.mixer.music.play(loops=0, start=float(i))
time.sleep(freq)
i = i + 1
if (i >= val):
raise BreakLoop
if (stopFlag==True):
raise BreakLoop
return 0
except BreakLoop as s:
return 0
except Exception as e:
x = str(e)
print(x)
return 1
def extractAudio(self, video_file, output_ext="mp3"):
try:
"""Converts video to audio directly using `ffmpeg` command
with the help of subprocess module"""
filename, ext = os.path.splitext(video_file)
subprocess.call(["ffmpeg", "-y", "-i", video_file, f"{filename}.{output_ext}"],
stdout=subprocess.DEVNULL,
stderr=subprocess.STDOUT)
return 0
except Exception as e:
x = str(e)
print('Error: ', x)
return 1
def processStream(self, debugInd, var):
try:
sep = self.sep
Curr_Path = self.Curr_Path
FileName = self.FileName
CacheL = self.CacheL
FileName_1 = self.FileName_1
audioLen = self.audioLen
audioFreq = self.audioFreq
videoFrame = self.videoFrame
stopFlag = self.stopFlag
zFlag = self.zFlag
title = self.title
print('audioFreq:')
print(str(audioFreq))
print('videoFrame:')
print(str(videoFrame))
# Construct the source for Video & Temporary Audio
videoFile = Curr_Path + sep + 'Video' + sep + FileName
audioFile = Curr_Path + sep + 'Video' + sep + FileName_1
# Load the Aruco dictionary and grab the Aruco parameters
print("[INFO] initializing marker detector…")
arucoDict = cv2.aruco.Dictionary_get(cv2.aruco.DICT_ARUCO_ORIGINAL)
arucoParams = cv2.aruco.DetectorParameters_create()
# Initialize the video file stream
print("[INFO] accessing video stream…")
vf = cv2.VideoCapture(videoFile)
x = self.extractAudio(videoFile)
if x == 0:
print('Successfully Audio extracted from the source file!')
else:
print('Failed to extract the source audio!')
# Initialize a queue to maintain the next frame from the video stream
Q = deque(maxlen=128)
# We need to have a frame in our queue to start our augmented reality
# pipeline, so read the next frame from our video file source and add
# it to our queue
(grabbed, source) = vf.read()
Q.appendleft(source)
# Initialize the video stream and allow the camera sensor to warm up
print("[INFO] starting video stream…")
vs = VideoStream(src=0).start()
time.sleep(2.0)
flg = 0
t = threading.Thread(target=self.playAudio, args=(audioFile, audioLen, audioFreq, stopFlag,))
t.daemon = True
try:
# Loop over the frames from the video stream
while len(Q) > 0:
try:
# Grab the frame from our video stream and resize it
frame = vs.read()
frame = imutils.resize(frame, width=1020)
# Attempt to find the ArUCo markers in the frame, and provided
# they are found, take the current source image and warp it onto
# input frame using our augmented reality technique
warped = x1.getWarpImages(
frame, source,
cornerIDs=(923, 1001, 241, 1007),
arucoDict=arucoDict,
arucoParams=arucoParams,
zoomFlag=zFlag,
useCache=CacheL > 0)
# If the warped frame is not None, then we know (1) we found the
# four ArUCo markers and (2) the perspective warp was successfully
# applied
if warped is not None:
# Set the frame to the output augment reality frame and then
# grab the next video file frame from our queue
frame = warped
source = Q.popleft()
if flg == 0:
t.start()
flg = flg + 1
# For speed/efficiency, we can use a queue to keep the next video
# frame queue ready for us — the trick is to ensure the queue is
# always (or nearly full)
if len(Q) != Q.maxlen:
# Read the next frame from the video file stream
(grabbed, nextFrame) = vf.read()
# If the frame was read (meaning we are not at the end of the
# video file stream), add the frame to our queue
if grabbed:
Q.append(nextFrame)
# Show the output frame
cv2.imshow(title, frame)
time.sleep(videoFrame)
# If the `q` key was pressed, break from the loop
if cv2.waitKey(2) & 0xFF == ord('q'):
stopFlag = True
break
except BreakLoop:
raise BreakLoop
except Exception as e:
pass
if (len(Q) == Q.maxlen):
time.sleep(2)
break
except BreakLoop as s:
print('Processed completed!')
# Performing cleanup at the end
cv2.destroyAllWindows()
vs.stop()
except Exception as e:
x = str(e)
print(x)
# Performing cleanup at the end
cv2.destroyAllWindows()
vs.stop()
return 0
except Exception as e:
x = str(e)
print('Error:', x)
return 1

Please find the key snippet from the above script –

def playAudio(self, audioFile, audioLen, freq, stopFlag=False):
  try:
    pygame.mixer.init()
    pygame.init()
    pygame.mixer.music.load(audioFile)

    pygame.mixer.music.set_volume(10)

    val = int(audioLen)
    i = 0

    while i < val:
      pygame.mixer.music.play(loops=0, start=float(i))
      time.sleep(freq)

      i = i + 1

      if (i >= val):
        raise BreakLoop

      if (stopFlag==True):
        raise BreakLoop

    return 0
  except BreakLoop as s:
    return 0
  except Exception as e:
    x = str(e)
    print(x)

    return 1

The above function will initiate the pygame library to run the sound of the video file that has been extracted as part of a separate process.

def extractAudio(self, video_file, output_ext="mp3"):
    try:
        """Converts video to audio directly using `ffmpeg` command
        with the help of subprocess module"""
        filename, ext = os.path.splitext(video_file)
        subprocess.call(["ffmpeg", "-y", "-i", video_file, f"{filename}.{output_ext}"],
                        stdout=subprocess.DEVNULL,
                        stderr=subprocess.STDOUT)

        return 0
    except Exception as e:
        x = str(e)
        print('Error: ', x)

        return 1

The above function temporarily extracts the audio file from the source trailer video.

# Initialize the video file stream
print("[INFO] accessing video stream...")
vf = cv2.VideoCapture(videoFile)

x = self.extractAudio(videoFile)

if x == 0:
    print('Successfully Audio extracted from the source file!')
else:
    print('Failed to extract the source audio!')

# Initialize a queue to maintain the next frame from the video stream
Q = deque(maxlen=128)

# We need to have a frame in our queue to start our augmented reality
# pipeline, so read the next frame from our video file source and add
# it to our queue
(grabbed, source) = vf.read()
Q.appendleft(source)

# Initialize the video stream and allow the camera sensor to warm up
print("[INFO] starting video stream...")
vs = VideoStream(src=0).start()

time.sleep(2.0)
flg = 0

The above snippets read the frames from the video file after invoking the audio extraction. Then, it uses a Queue method to store all the video frames for better performance. And finally, it starts consuming the standard streaming video from the WebCAM to augment the trailer video on top of it.

t = threading.Thread(target=self.playAudio, args=(audioFile, audioLen, audioFreq, stopFlag,))
t.daemon = True

Now, the application has instantiated an orphan thread to spin off the audio play function. The reason is to void the performance & video frame frequency impact on top of it.

while len(Q) > 0:
  try:
    # Grab the frame from our video stream and resize it
    frame = vs.read()
    frame = imutils.resize(frame, width=1020)

    # Attempt to find the ArUCo markers in the frame, and provided
    # they are found, take the current source image and warp it onto
    # input frame using our augmented reality technique
    warped = x1.getWarpImages(
      frame, source,
      cornerIDs=(923, 1001, 241, 1007),
      arucoDict=arucoDict,
      arucoParams=arucoParams,
      zoomFlag=zFlag,
      useCache=CacheL > 0)

    # If the warped frame is not None, then we know (1) we found the
    # four ArUCo markers and (2) the perspective warp was successfully
    # applied
    if warped is not None:
      # Set the frame to the output augment reality frame and then
      # grab the next video file frame from our queue
      frame = warped
      source = Q.popleft()

      if flg == 0:

        t.start()
        flg = flg + 1

    # For speed/efficiency, we can use a queue to keep the next video
    # frame queue ready for us -- the trick is to ensure the queue is
    # always (or nearly full)
    if len(Q) != Q.maxlen:
      # Read the next frame from the video file stream
      (grabbed, nextFrame) = vf.read()

      # If the frame was read (meaning we are not at the end of the
      # video file stream), add the frame to our queue
      if grabbed:
        Q.append(nextFrame)

    # Show the output frame
    cv2.imshow(title, frame)
    time.sleep(videoFrame)

    # If the `q` key was pressed, break from the loop
    if cv2.waitKey(2) & 0xFF == ord('q'):
      stopFlag = True
      break

  except BreakLoop:
    raise BreakLoop
  except Exception as e:
    pass

  if (len(Q) == Q.maxlen):
    time.sleep(2)
    break

The final segment will call the getWarpImages function to get the Augmented image on top of the video. It also checks for the upcoming frames & whether the source video is finished or not. In case of the end, the application will initiate a break method to come out from the infinite WebCAM read. Also, there is a provision for manual exit by pressing the ‘Q’ from the MacBook keyboard.

# Performing cleanup at the end
cv2.destroyAllWindows()
vs.stop()

It is always advisable to close your camera & remove any temporarily available windows that are still left once the application finishes the process.

  • augmentedMovieTrailer.py (Main calling script)


#####################################################
#### Written By: SATYAKI DE ####
#### Written On: 22-Jun-2022 ####
#### Modified On 25-Jun-2022 ####
#### ####
#### Objective: This is the main calling ####
#### python script that will invoke the ####
#### clsEmbedVideoWithStream class to initiate ####
#### the augmented reality in real-time ####
#### & display a trailer on top of any surface ####
#### via Web-CAM. ####
#####################################################
# We keep the setup code in a different class as shown below.
import clsEmbedVideoWithStream as evws
from clsConfig import clsConfig as cf
import datetime
import logging
###############################################
### Global Section ###
###############################################
# Instantiating all the main class
x1 = evws.clsEmbedVideoWithStream()
###############################################
### End of Global Section ###
###############################################
def main():
try:
# Other useful variables
debugInd = 'Y'
var = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
var1 = datetime.datetime.now()
print('Start Time: ', str(var))
# End of useful variables
# Initiating Log Class
general_log_path = str(cf.conf['LOG_PATH'])
# Enabling Logging Info
logging.basicConfig(filename=general_log_path + 'augmentedMovieTrailer.log', level=logging.INFO)
print('Started augmenting videos!')
# Execute all the pass
r1 = x1.processStream(debugInd, var)
if (r1 == 0):
print('Successfully identified human emotions!')
else:
print('Failed to identify the human emotions!')
var2 = datetime.datetime.now()
c = var2 var1
minutes = c.total_seconds() / 60
print('Total difference in minutes: ', str(minutes))
print('End Time: ', str(var1))
except Exception as e:
x = str(e)
print('Error: ', x)
if __name__ == "__main__":
main()

The above script will initially instantiate the main calling class & then invoke the processStream function to create the Augmented Reality.


FOLDER STRUCTURE:

Here is the folder structure that contains all the files & directories in MAC O/S –

Directory Structure

You will get the complete codebase in the following Github link.

If you want to know more about this legendary director & his famous work, please visit the following link.

I’ll bring some more exciting topic in the coming days from the Python verse. Please share & subscribe my post & let me know your feedback.

Till then, Happy Avenging! 🙂

Note: All the data & scenario posted here are representational data & scenarios & available over the internet & for educational purpose only. Some of the images (except my photo) that we’ve used are available over the net. We don’t claim the ownership of these images. There is an always room for improvement & especially the prediction quality.

Real-time stacked-up coin counts with the help of Computer Vision using Python-based OpenCV.

Hi Guys,

Today, I’ll be using another exciting installment of Computer Vision. Today, our focus will be to get a sense of visual counting. Let me explain. This post will demonstrate how to count the number of stacked-up coins using computer vision. And, we’re going to add more coins to see the number changes.

Why don’t we see the demo first before jumping into the technical details?

Demo

Isn’t it exciting?


Architecture:

Let us understand the architecture –

From the above diagram, one can notice that as raw video feed captured from a specific location at a measured distance. The python-based intelligent application will read the numbers & project on top of the video feed for human validations.

Let me share one more perspective of how you can configure this experiment with another diagram that I prepared for this post.

Setup Process

From the above picture, one can see that a specific distance exists between the camera & the stacked coins as that will influence the single coin width.

You can see how that changed with the following pictures –

This entire test will depend upon many factors to consider to get effective results. I provided the basic demo. However, to make it robust & dynamic, one can dynamically diagnose the distance & individual coin width before starting this project. I felt that part should be machine learning to correctly predict the particular coin width depending upon the length & number of coins stacked. I leave it to you to explore that part.

Then how does the Aruco marker comes into the picture?

Let’s read it from the primary source side –

From: Source

Please refer to the following link if you want to know more.

For our use case, we’ll be using the following aruco marker –

Marker

How will this help us? Because we know the width & height of it. And depending upon the placement & overall pixel area size, our application can then identify the pixel to centimeter ratio & which will enable us to predict any other objects’ height & width. Once we have that, the application will divide that by the calculated width we observed for each coin from this distance. And, then the application will be able to predict the actual counts in real-time.

How can you identify the individual width?

My easy process would be to put ten quarter dollars stacked up & then you will get the height from the Computer vision. You have to divide that height by 10 to get the individual width of the coin until you build the model to predict the correct width depending upon the distance.


CODE:

Let us understand the code now –

  • clsConfig.py (Configuration file for the entire application.)


################################################
#### Written By: SATYAKI DE ####
#### Written On: 15-May-2020 ####
#### Modified On: 28-Dec-2021 ####
#### ####
#### Objective: This script is a config ####
#### file, contains all the keys for ####
#### Machine-Learning & streaming dashboard.####
#### ####
################################################
import os
import platform as pl
class clsConfig(object):
Curr_Path = os.path.dirname(os.path.realpath(__file__))
os_det = pl.system()
if os_det == "Windows":
sep = '\\'
else:
sep = '/'
conf = {
'APP_ID': 1,
'ARCH_DIR': Curr_Path + sep + 'arch' + sep,
'PROFILE_PATH': Curr_Path + sep + 'profile' + sep,
'LOG_PATH': Curr_Path + sep + 'log' + sep,
'REPORT_PATH': Curr_Path + sep + 'report',
'FILE_NAME': Curr_Path + sep + 'Image' + sep + 'Orig.jpeg',
'SRC_PATH': Curr_Path + sep + 'data' + sep,
'APP_DESC_1': 'Old Video Enhancement!',
'DEBUG_IND': 'N',
'INIT_PATH': Curr_Path,
'SUBDIR': 'data',
'SEP': sep,
'COIN_DEF_HEIGHT':0.22,
'PIC_TO_CM_MAP': 15.24,
'CONTOUR_AREA': 2000
}

view raw

clsConfig.py

hosted with ❤ by GitHub

'COIN_DEF_HEIGHT':0.22,
'PIC_TO_CM_MAP': 15.24,
'CONTOUR_AREA': 2000

The above entries are the important for us.

  1. PIC_TO_CM_MAP is the total length of the Aruco marker in centimeters involving all four sides.
  2. CONTOUR_AREA will change depending upon the minimum size you want to identify as part of the contour.
  3. COIN_DEF_HEIGHT needs to be revised as part of the previous steps explained.
  • clsAutoDetector.py (This python script will detect the contour.)


###############################################
#### Written By: SATYAKI DE ####
#### Written On: 17-Jan-2022 ####
#### Modified On 20-Mar-2022 ####
#### ####
#### Objective: This python script will ####
#### auto-detects the contours of an image ####
#### using grayscale conversion & then ####
#### share the contours details to the ####
#### calling class. ####
###############################################
import cv2
from clsConfig import clsConfig as cf
class clsAutoDetector():
def __init__(self):
self.cntArea = int(cf.conf['CONTOUR_AREA'])
def detectObjects(self, frame):
try:
cntArea = self.cntArea
# Convert Image to grayscale Image
grayImage = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# Create a Mask with adaptive threshold
maskImage = cv2.adaptiveThreshold(grayImage, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 19, 5)
cv2.imshow("Masked-Image", maskImage)
# Find contours
conts, Oth = cv2.findContours(maskImage, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
objectsConts = []
for cnt in conts:
area = cv2.contourArea(cnt)
if area > cntArea:
objectsConts.append(cnt)
return objectsConts
except Exception as e:
x = str(e)
print('Error: ', x)
objectsConts = []
return objectsConts

Key snippets from the above script are as follows –

# Find contours
conts, Oth = cv2.findContours(maskImage, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

objectsConts = []

for cnt in conts:
    area = cv2.contourArea(cnt)
    if area > cntArea:
        objectsConts.append(cnt)

Depending upon the supplied contour area, this script will identify & mark the contour of every frame captured through WebCam.

  • clsCountRealtime.py (This is the main class to calculate the number of stacked coins after reading using computer vision.)


##################################################
#### Written By: SATYAKI DE ####
#### Written On: 17-Jan-2022 ####
#### Modified On 20-Mar-2022 ####
#### ####
#### Objective: This python class will ####
#### learn the number of coins stacks on ####
#### top of another using computer vision ####
#### with the help from Open-CV after ####
#### manually recalibarting the initial ####
#### data (Individual Coin Heights needs to ####
#### adjust based on the distance of camera.) ####
##################################################
import cv2
from clsAutoDetector import *
import numpy as np
import os
import platform as pl
# Custom Class
from clsConfig import clsConfig as cf
import clsL as cl
# Initiating Log class
l = cl.clsL()
# Load Aruco detector
arucoParams = cv2.aruco.DetectorParameters_create()
arucoDict = cv2.aruco.Dictionary_get(cv2.aruco.DICT_5X5_50)
# Load Object Detector
detector = clsAutoDetector()
class clsCountRealtime:
def __init__(self):
self.sep = str(cf.conf['SEP'])
self.Curr_Path = str(cf.conf['INIT_PATH'])
self.coinDefH = float(cf.conf['COIN_DEF_HEIGHT'])
self.pics2cm = float(cf.conf['PIC_TO_CM_MAP'])
def learnStats(self, debugInd, var):
try:
# Per Coin Default Size from the known distance_to_camera
coinDefH = self.coinDefH
pics2cm = self.pics2cm
# Load Cap
cap = cv2.VideoCapture(0)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1280)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 720)
while True:
success, img = cap.read()
if success == False:
break
# Get Aruco marker
imgCorners, a, b = cv2.aruco.detectMarkers(img, arucoDict, parameters=arucoParams)
if imgCorners:
# Draw polygon around the marker
imgCornersInt = np.int0(imgCorners)
cv2.polylines(img, imgCornersInt, True, (0, 255, 0), 5)
# Aruco Perimeter
arucoPerimeter = cv2.arcLength(imgCornersInt[0], True)
# Pixel to cm ratio
pixelCMRatio = arucoPerimeter / pics2cm
contours = detector.detectObjects(img)
# Draw objects boundaries
for cnt in contours:
# Get rect
rect = cv2.boundingRect(cnt)
(x, y, w, h) = rect
print('*'*60)
print('Width Pixel: ')
print(str(w))
print('Height Pixel: ')
print(str(h))
# Get Width and Height of the Objects by applying the Ratio pixel to cm
objWidth = round(w / pixelCMRatio, 1)
objHeight = round(h / pixelCMRatio, 1)
cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)
cv2.putText(img, "Width {} cm".format(objWidth), (int(x – 100), int(y – 20)), cv2.FONT_HERSHEY_PLAIN, 2, (100, 200, 0), 2)
cv2.putText(img, "Height {} cm".format(objHeight), (int(x – 100), int(y + 15)), cv2.FONT_HERSHEY_PLAIN, 2, (100, 200, 0), 2)
NoOfCoins = round(objHeight / coinDefH)
cv2.putText(img, "No Of Coins: {}".format(NoOfCoins), (int(x – 100), int(y + 35)), cv2.FONT_HERSHEY_PLAIN, 2, (250, 0, 250), 2)
print('Final Height: ')
print(str(objHeight))
print('No Of Coins: ')
print(str(NoOfCoins))
cv2.imshow("Image", img)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
return 0
except Exception as e:
x = str(e)
print('Error: ', x)
return 1

Some of the key snippets from this script –

# Aruco Perimeter
arucoPerimeter = cv2.arcLength(imgCornersInt[0], True)

# Pixel to cm ratio
pixelCMRatio = arucoPerimeter / pics2cm

The above lines will extract the critical auroco perimeter & then the ratio between pixel against centimeters.

contours = detector.detectObjects(img)

The application detects the contours of each frame from the previous class, which will be used here.

# Draw objects boundaries
for cnt in contours:
    # Get rect
    rect = cv2.boundingRect(cnt)
    (x, y, w, h) = rect

In this step, the application will draw the object contours & also capture the center points, along with the height & width of the identified objects.

# Get Width and Height of the Objects by applying the Ratio pixel to cm
objWidth = round(w / pixelCMRatio, 1)
objHeight = round(h / pixelCMRatio, 1)

Finally, identify the width & height of the contoured object in centimeters.

cv2.putText(img, "Width {} cm".format(objWidth), (int(x - 100), int(y - 20)), cv2.FONT_HERSHEY_PLAIN, 2, (100, 200, 0), 2)
cv2.putText(img, "Height {} cm".format(objHeight), (int(x - 100), int(y + 15)), cv2.FONT_HERSHEY_PLAIN, 2, (100, 200, 0), 2)

NoOfCoins = round(objHeight / coinDefH)

cv2.putText(img, "No Of Coins: {}".format(NoOfCoins), (int(x - 100), int(y + 35)), cv2.FONT_HERSHEY_PLAIN, 2, (250, 0, 250), 2)

It displays both the height, width & total number of coins on top of the live video.

if cv2.waitKey(1) & 0xFF == ord('q'):
    break

The above line will help the developer exit from the visual application by pressing the escape or ‘q’ key in Macbook.

  • visualDataRead.py (Main calling function.)


###############################################
#### Written By: SATYAKI DE ####
#### Written On: 17-Jan-2022 ####
#### Modified On 20-Mar-2022 ####
#### ####
#### Objective: This is the main calling ####
#### python script that will invoke the ####
#### clsCountRealtime class to initiate ####
#### the model to read the real-time ####
#### stckaed-up coins & share the actual ####
#### numbers on top of the video feed. ####
###############################################
# We keep the setup code in a different class as shown below.
import clsCountRealtime as ar
from clsConfig import clsConfig as cf
import datetime
import logging
###############################################
### Global Section ###
###############################################
# Instantiating all the three classes
x1 = ar.clsCountRealtime()
###############################################
### End of Global Section ###
###############################################
def main():
try:
# Other useful variables
debugInd = 'Y'
var = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
var1 = datetime.datetime.now()
print('Start Time: ', str(var))
# End of useful variables
# Initiating Log Class
general_log_path = str(cf.conf['LOG_PATH'])
# Enabling Logging Info
logging.basicConfig(filename=general_log_path + 'restoreVideo.log', level=logging.INFO)
print('Started Capturing Real-Time Coin Counts!')
# Execute all the pass
r1 = x1.learnStats(debugInd, var)
if (r1 == 0):
print('Successfully counts number of stcaked coins!')
else:
print('Failed to counts number of stcaked coins!')
var2 = datetime.datetime.now()
c = var2 var1
minutes = c.total_seconds() / 60
print('Total difference in minutes: ', str(minutes))
print('End Time: ', str(var1))
except Exception as e:
x = str(e)
print('Error: ', x)
if __name__ == "__main__":
main()

And, the key snippet from the above script –

x1 = ar.clsCountRealtime()

The application instantiates the main class.

# Execute all the pass
r1 = x1.learnStats(debugInd, var)

if (r1 == 0):
    print('Successfully counts number of stcaked coins!')
else:
    print('Failed to counts number of stcaked coins!')

The above code invokes the learnStats function to calculate the count of stacked coins.


FOLDER STRUCTURE:

Folder Details

So, we’ve done it.

You will get the complete codebase in the following Github link.

I’ll bring some more exciting topic in the coming days from the Python verse. Please share & subscribe my post & let me know your feedback.

Till then, Happy Avenging! 😀

Note: All the data & scenario posted here are representational data & scenarios & available over the internet & for educational purpose only. Some of the images (except my photo) that we’ve used are available over the net. We don’t claim the ownership of these images. There is an always room for improvement & especially the prediction quality.

Real-Time Matplotlib view from a streaming data built using Python & Kivy-based iOS App

Today, I’ll be sharing one of the most exciting posts I’ve ever shared. This post is rare as you cannot find the most relevant working solution easily over the net.

So, what are we talking about here? We’re going to build a Python-based iOS App using the Kivy framework. You get plenty of videos & documents on this as well. However, nowhere you’ll find the capability that I’m about to disclose. We’ll consume live IoT streaming data from a dummy application & then plot them in a MatplotLib dashboard inside the mobile App. And that’s where this post is seriously different from the rest of the available white papers.


But, before we dig into more details, let us see a quick demo of our iOS App.

Demo:

Demo

Isn’t it exciting? Great! Now, let’s dig into the details.


Let’s understand the architecture as to how we want to proceed with the solution here.

Architecture:

Broad-level design

The above diagram shows that the Kive-based iOS application that will consume streaming data from the Ably queue. The initial dummy IoT application will push the real-time events to the same Ably queue.

So, now we understand the architecture. Fantastic!

Let’s deep dive into the code that we specifically built for this use case.


Code:

  1. IoTDataGen.py (Publishing Streaming data to Ably channels & captured IoT events from the simulator & publish them in Dashboard through measured KPIs.)


##############################################
#### Updated By: SATYAKI DE ####
#### Updated On: 12-Nov-2021 ####
#### ####
#### Objective: Publishing Streaming data ####
#### to Ably channels & captured IoT ####
#### events from the simulator & publish ####
#### them in Dashboard through measured ####
#### KPIs. ####
#### ####
##############################################
import random
import time
import json
import clsPublishStream as cps
import datetime
from clsConfig import clsConfig as cf
import logging
# Invoking the IoT Device Generator.
def main():
###############################################
### Global Section ###
###############################################
# Initiating Ably class to push events
x1 = cps.clsPublishStream()
###############################################
### End of Global Section ###
###############################################
# Initiating Log Class
general_log_path = str(cf.conf['LOG_PATH'])
msgSize = int(cf.conf['limRec'])
# Enabling Logging Info
logging.basicConfig(filename=general_log_path + 'IoTDevice.log', level=logging.INFO)
# Other useful variables
cnt = 1
idx = 0
debugInd = 'Y'
x_value = 0
total_1 = 100
total_2 = 100
var = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
# End of usefull variables
while True:
srcJson = {
"x_value": x_value,
"total_1": total_1,
"total_2": total_2
}
x_value += 1
total_1 = total_1 + random.randint(6, 8)
total_2 = total_2 + random.randint(5, 6)
tmpJson = str(srcJson)
if cnt == 1:
srcJsonMast = '{' + '"' + str(idx) + '":'+ tmpJson
elif cnt == msgSize:
srcJsonMast = srcJsonMast + '}'
print('JSON: ')
print(str(srcJsonMast))
# Pushing both the Historical Confirmed Cases
retVal_1 = x1.pushEvents(srcJsonMast, debugInd, var)
if retVal_1 == 0:
print('Successfully IoT event pushed!')
else:
print('Failed to push IoT events!')
srcJsonMast = ''
tmpJson = ''
cnt = 0
idx = 1
srcJson = {}
retVal_1 = 0
else:
srcJsonMast = srcJsonMast + ',' + '"' + str(idx) + '":'+ tmpJson
cnt += 1
idx += 1
time.sleep(1)
if __name__ == "__main__":
main()

view raw

IoTDataGen.py

hosted with ❤ by GitHub

Let’s explore the key snippets from the above script.

# Initiating Ably class to push events
x1 = cps.clsPublishStream()

The I-OS App is calling the main class to publish the JSON events to Ably Queue.

if cnt == 1:
    srcJsonMast = '{' + '"' + str(idx) + '":'+ tmpJson
elif cnt == msgSize:
    srcJsonMast = srcJsonMast + '}'
    print('JSON: ')
    print(str(srcJsonMast))

    # Pushing both the Historical Confirmed Cases
    retVal_1 = x1.pushEvents(srcJsonMast, debugInd, var)

    if retVal_1 == 0:
        print('Successfully IoT event pushed!')
    else:
        print('Failed to push IoT events!')

    srcJsonMast = ''
    tmpJson = ''
    cnt = 0
    idx = -1
    srcJson = {}
    retVal_1 = 0
else:
    srcJsonMast = srcJsonMast + ',' + '"' + str(idx) + '":'+ tmpJson

In the above snippet, we’re forming the payload dynamically & then calling the “pushEvents” to push all the random generated IoT mock-events to the Ably queue.

2. custom.kv (Publishing Streaming data to Ably channels & captured IoT events from the simulator & publish them in Dashboard through measured KPIs.)


###############################################################
#### ####
#### Written By: Satyaki De ####
#### Written Date: 12-Nov-2021 ####
#### ####
#### Objective: This Kivy design file contains all the ####
#### graphical interface of our I-OS App. This including ####
#### the functionalities of buttons. ####
#### ####
#### Note: If you think this file is not proeprly read by ####
#### the program, then remove this entire comment block & ####
#### then run the application. It should work. ####
###############################################################
MainInterface:
<MainInterface>:
ScreenManager:
id: sm
size: root.width, root.height
Screen:
name: "background_1"
Image:
source: "Background/Background_1.png"
allow_stretch: True
keep_ratio: True
size_hint_y: None
size_hint_x: None
width: self.parent.width
height: self.parent.width/self.image_ratio
FloatLayout:
orientation: 'vertical'
Label:
text: "This is an application, which will consume the live streaming data inside a Kivy-based IOS-App by using Matplotlib to capture the KPIs."
text_size: self.width + 350, None
height: self.texture_size[1]
halign: "left"
valign: "bottom"
pos_hint: {'center_x':2.9,'center_y':6.5}
Image:
id: homesc
pos_hint: {'right':6, 'top':5.4}
size_hint: None, None
size: 560, 485
source: "Background/FP.jpeg"
Screen:
name: "background_2"
Image:
source: "Background/Background_2.png"
allow_stretch: True
keep_ratio: True
size_hint_y: None
size_hint_x: None
width: self.parent.width
height: self.parent.width/self.image_ratio
FloatLayout:
Label:
text: "Please find the realtime IoT-device Live Statistics:"
text_size: self.width + 430, None
height: self.texture_size[1]
halign: "left"
valign: "top"
pos_hint: {'center_x':3.0,'center_y':7.0}
Label:
text: "DC to Servo Min Ratio:"
text_size: self.width + 430, None
height: self.texture_size[1]
halign: "left"
valign: "top"
pos_hint: {'center_x':3.0,'center_y':6.2}
Label:
id: dynMin
text: "100"
text_size: self.width + 430, None
height: self.texture_size[1]
halign: "left"
valign: "top"
pos_hint: {'center_x':6.2,'center_y':6.2}
Label:
text: "DC Motor:"
text_size: self.width + 430, None
height: self.texture_size[1]
halign: "left"
valign: "top"
pos_hint: {'center_x':6.8,'center_y':5.4}
Label:
text: "(MAX)"
text_size: self.width + 430, None
height: self.texture_size[1]
halign: "left"
valign: "top"
pos_hint: {'center_x':6.8,'center_y':5.0}
Label:
id: dynDC
text: "100"
text_size: self.width + 430, None
height: self.texture_size[1]
halign: "left"
valign: "top"
pos_hint: {'center_x':6.8,'center_y':4.6}
Label:
text: " ——- Vs ——- "
text_size: self.width + 430, None
height: self.texture_size[1]
halign: "left"
valign: "top"
pos_hint: {'center_x':6.8,'center_y':4.0}
Label:
text: "Servo Motor:"
text_size: self.width + 430, None
height: self.texture_size[1]
halign: "left"
valign: "top"
pos_hint: {'center_x':6.8,'center_y':3.4}
Label:
text: "(MAX)"
text_size: self.width + 430, None
height: self.texture_size[1]
halign: "left"
valign: "top"
pos_hint: {'center_x':6.8,'center_y':3.0}
Label:
id: dynServo
text: "100"
text_size: self.width + 430, None
height: self.texture_size[1]
halign: "left"
valign: "top"
pos_hint: {'center_x':6.8,'center_y':2.6}
FloatLayout:
id: box
size: 400, 550
pos: 200, 300
Screen:
name: "background_3"
Image:
source: "Background/Background_3.png"
allow_stretch: True
keep_ratio: True
size_hint_y: None
size_hint_x: None
width: self.parent.width
height: self.parent.width/self.image_ratio
FloatLayout:
orientation: 'vertical'
Label:
text: "Please find the live like status."
text_size: self.width + 350, None
height: self.texture_size[1]
halign: "left"
valign: "bottom"
pos_hint: {'center_x':2.6,'center_y':7.2}
Label:
id: dynVal
text: "100"
text_size: self.width + 350, None
height: self.texture_size[1]
halign: "left"
valign: "bottom"
pos_hint: {'center_x':4.1,'center_y':6.4}
Image:
id: lk_img_1
pos_hint: {'center_x':3.2, 'center_y':6.4}
size_hint: None, None
size: 460, 285
source: "Background/Likes_Btn_R.png"
Label:
text: "Want to know more about the Developer? Here is the detail ->"
text_size: self.width + 450, None
height: self.texture_size[1]
halign: "left"
valign: "bottom"
pos_hint: {'center_x':3.1,'center_y':5.5}
Label:
text: "I love to find out new technologies that is emerging as a driving force & shape our future!"
text_size: self.width + 290, None
height: self.texture_size[1]
halign: "left"
valign: "bottom"
pos_hint: {'center_x':2.3,'center_y':3.8}
Label:
text: "For more information view the website to know more on Python-Kivy along with Matplotlib Live Streaming."
text_size: self.width + 450, None
height: self.texture_size[1]
halign: "left"
valign: "bottom"
pos_hint: {'center_x':3.1,'center_y':1.9}
Image:
id: avatar
pos_hint: {'right':6.8, 'top':5.4}
size_hint: None, None
size: 460, 285
source: "Background/Me.jpeg"
Label:
text: "https://www.satyakide.com"
text_size: self.width + 350, None
height: self.texture_size[1]
halign: "left"
valign: "bottom"
pos_hint: {'center_x':3.4,'center_y':0.9}
Image:
source: "Background/Top_Bar.png"
size: 620, 175
pos: 0, root.height 535
Button:
#: set val 'Start'
size: 112.5, 75
pos: root.width/2190, root.height120
background_color: 1,1,1,0
on_press: root.pressed(self, val, sm)
on_release: root.released(self, val)
Image:
id: s_img
text: val
source: "Background/Start_Btn.png"
center_x: self.parent.center_x 260
center_y: self.parent.center_y 415
Button:
#: set val2 'Stats'
size: 112.5, 75
pos: root.width/255, root.height120
background_color: 1,1,1,0
on_press: root.pressed(self, val2, sm)
on_release: root.released(self, val2)
Image:
id: st_img
text: val2
source: "Background/Stats_Btn.png"
center_x: self.parent.center_x 250
center_y: self.parent.center_y 415
Button:
#: set val3 'Likes'
size: 112.5, 75
pos: root.width/2+75, root.height120
background_color: 1,1,1,0
on_press: root.pressed(self, val3, sm)
on_release: root.released(self, val3)
Image:
id: lk_img
text: val3
source: "Background/Likes_Btn.png"
center_x: self.parent.center_x 240
center_y: self.parent.center_y 415

view raw

custom.kv

hosted with ❤ by GitHub

To understand this, one needs to learn how to prepare a Kivy design layout using the KV-language. You can develop the same using native-python code as well. However, I wanted to explore this language & not to mention that this is the preferred way of doing a front-end GUI design in Kivy.

Like any graphical interface, one needs to understand the layouts & the widgets that you are planning to use or build. For that, please go through the following critical documentation link on Kivy Layouts. Please go through this if you are doing this for the first time.

To pinpoint the conversation, I would like to present the documentation segment from the official site in the given picture –

Official Kivy-refernce

Since we’ve used our custom buttons & top bars, the most convenient GUI layouts will be FloatLayout for our use case. By using that layout, we can conveniently position our widgets at any random place as per our needs. At the same time, one can use nested layouts by combining different types of arrangements under another.

Some of the key lines from the above scripting files will be –

Screen:
  name: "background_1"
  Image:
      source: "Background/Background_1.png"
      allow_stretch: True
      keep_ratio: True
      size_hint_y: None
      size_hint_x: None
      width: self.parent.width
      height: self.parent.width/self.image_ratio
      FloatLayout:
          orientation: 'vertical'
          Label:
              text: "This is an application, which will consume the live streaming data inside a Kivy-based IOS-App by using Matplotlib to capture the KPIs."
              text_size: self.width + 350, None
              height: self.texture_size[1]
              halign: "left"
              valign: "bottom"
              pos_hint: {'center_x':2.9,'center_y':6.5}
          Image:
              id: homesc
              pos_hint: {'right':6, 'top':5.4}
              size_hint: None, None
              size: 560, 485
              source: "Background/FP.jpeg"

Let us understand what we discussed here & try to map that with the image.

Part of GUI defined in KV file

From the above image now, you can understand how we placed the label & image into our custom positions to create a lean & clean interface.

Image:
      source: "Background/Top_Bar.png"
      size: 620, 175
      pos: 0, root.height - 535

  Button:
      #: set val 'Start'
      size: 112.5, 75
      pos: root.width/2-190, root.height-120
      background_color: 1,1,1,0
      on_press: root.pressed(self, val, sm)
      on_release: root.released(self, val)
      Image:
          id: s_img
          text: val
          source: "Background/Start_Btn.png"
          center_x: self.parent.center_x - 260
          center_y: self.parent.center_y - 415

  Button:
      #: set val2 'Stats'
      size: 112.5, 75
      pos: root.width/2-55, root.height-120
      background_color: 1,1,1,0
      on_press: root.pressed(self, val2, sm)
      on_release: root.released(self, val2)
      Image:
          id: st_img
          text: val2
          source: "Background/Stats_Btn.png"
          center_x: self.parent.center_x - 250
          center_y: self.parent.center_y - 415

  Button:
      #: set val3 'Likes'
      size: 112.5, 75
      pos: root.width/2+75, root.height-120
      background_color: 1,1,1,0
      on_press: root.pressed(self, val3, sm)
      on_release: root.released(self, val3)
      Image:
          id: lk_img
          text: val3
          source: "Background/Likes_Btn.png"
          center_x: self.parent.center_x - 240
          center_y: self.parent.center_y - 415

Let us understand the custom buttons mapped in our Apps.

So, these are custom buttons. We placed them into specific positions & sizes by mentioning the appropriate size & position coordinates & then assigned the button methods (on_press & on_release).

However, these button methods will be present inside the main python script, which we’ll discuss after this segment.

3. main.py (Consuming Streaming data from Ably channels & captured IoT events from the simulator & publish them in Kivy-based iOS App through measured KPIs.)


##############################################
#### Updated By: SATYAKI DE ####
#### Updated On: 12-Nov-2021 ####
#### ####
#### Objective: Consuming Streaming data ####
#### from Ably channels & captured IoT ####
#### events from the simulator & publish ####
#### them in Kivy-I/OS App through ####
#### measured KPIs. ####
#### ####
##############################################
from kivy.app import App
from kivy.uix.widget import Widget
from kivy.lang import Builder
from kivy.uix.boxlayout import BoxLayout
from kivy.uix.floatlayout import FloatLayout
from kivy.clock import Clock
from kivy.core.window import Window
from kivymd.app import MDApp
import datetime as dt
import datetime
from kivy.properties import StringProperty
from kivy.vector import Vector
import regex as re
import os
os.environ["KIVY_IMAGE"]="pil"
import platform as pl
import matplotlib.pyplot as plt
import pandas as p
from matplotlib.patches import Rectangle
from matplotlib import use as mpl_use
mpl_use('module://kivy.garden.matplotlib.backend_kivy')
plt.style.use('fivethirtyeight')
# Consuming data from Ably Queue
from ably import AblyRest
# Main Class to consume streaming
import clsStreamConsume as ca
# Create the instance of the Covid API Class
x1 = ca.clsStreamConsume()
var1 = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
print('*' *60)
DInd = 'Y'
Window.size = (310, 460)
Curr_Path = os.path.dirname(os.path.realpath(__file__))
os_det = pl.system()
if os_det == "Windows":
sep = '\\'
else:
sep = '/'
def getRealTimeIoT():
try:
# Let's pass this to our map section
df = x1.conStream(var1, DInd)
print('Data:')
print(str(df))
return df
except Exception as e:
x = str(e)
print(x)
df = p.DataFrame()
return df
class MainInterface(FloatLayout):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.data = getRealTimeIoT()
self.likes = 0
self.dcMotor = 0
self.servoMotor = 0
self.minRatio = 0
plt.subplots_adjust(bottom=0.19)
#self.fig, self.ax = plt.subplots(1,1, figsize=(6.5,10))
self.fig, self.ax = plt.subplots()
self.mpl_canvas = self.fig.canvas
def on_data(self, *args):
self.ax.clear()
self.data = getRealTimeIoT()
self.ids.lk_img_1.source = Curr_Path + sep + 'Background' + sep + "Likes_Btn.png"
self.likes = self.getMaxLike(self.data)
self.ids.dynVal.text = str(self.likes)
self.ids.lk_img_1.source = ''
self.ids.lk_img_1.source = Curr_Path + sep + 'Background' + sep + "Likes_Btn_R.png"
self.dcMotor = self.getMaxDCMotor(self.data)
self.ids.dynDC.text = str(self.dcMotor)
self.servoMotor = self.getMaxServoMotor(self.data)
self.ids.dynServo.text = str(self.servoMotor)
self.minRatio = self.getDc2ServoMinRatio(self.data)
self.ids.dynMin.text = str(self.minRatio)
x = self.data['x_value']
y1 = self.data['total_1']
y2 = self.data['total_2']
self.ax.plot(x, y1, label='Channel 1', linewidth=5.0)
self.ax.plot(x, y2, label='Channel 2', linewidth=5.0)
self.mpl_canvas.draw_idle()
box = self.ids.box
box.clear_widgets()
box.add_widget(self.mpl_canvas)
return self.data
def getMaxLike(self, df):
payload = df['x_value']
a1 = str(payload.agg(['max']))
max_val = int(re.search(r'\d+', a1)[0])
return max_val
def getMaxDCMotor(self, df):
payload = df['total_1']
a1 = str(payload.agg(['max']))
max_val = int(re.search(r'\d+', a1)[0])
return max_val
def getMaxServoMotor(self, df):
payload = df['total_2']
a1 = str(payload.agg(['max']))
max_val = int(re.search(r'\d+', a1)[0])
return max_val
def getMinDCMotor(self, df):
payload = df['total_1']
a1 = str(payload.agg(['min']))
min_val = int(re.search(r'\d+', a1)[0])
return min_val
def getMinServoMotor(self, df):
payload = df['total_2']
a1 = str(payload.agg(['min']))
min_val = int(re.search(r'\d+', a1)[0])
return min_val
def getDc2ServoMinRatio(self, df):
minDC = self.getMinDCMotor(df)
minServo = self.getMinServoMotor(df)
min_ratio = round(float(minDC/minServo), 5)
return min_ratio
def update(self, *args):
self.data = self.on_data(self.data)
def pressed(self, instance, inText, SM):
if str(inText).upper() == 'START':
instance.parent.ids.s_img.source = Curr_Path + sep + 'Background' + sep + "Pressed_Start_Btn.png"
print('In Pressed: ', str(instance.parent.ids.s_img.text).upper())
if ((SM.current == "background_2") or (SM.current == "background_3")):
SM.transition.direction = "right"
SM.current= "background_1"
Clock.unschedule(self.update)
self.remove_widget(self.mpl_canvas)
elif str(inText).upper() == 'STATS':
instance.parent.ids.st_img.source = Curr_Path + sep + 'Background' + sep + "Pressed_Stats_Btn.png"
print('In Pressed: ', str(instance.parent.ids.st_img.text).upper())
if (SM.current == "background_1"):
SM.transition.direction = "left"
elif (SM.current == "background_3"):
SM.transition.direction = "right"
SM.current= "background_2"
Clock.schedule_interval(self.update, 0.1)
else:
instance.parent.ids.lk_img.source = Curr_Path + sep + 'Background' + sep + "Pressed_Likes_Btn.png"
print('In Pressed: ', str(instance.parent.ids.lk_img.text).upper())
if ((SM.current == "background_1") or (SM.current == "background_2")):
SM.transition.direction = "left"
SM.current= "background_3"
Clock.schedule_interval(self.update, 0.1)
instance.parent.ids.dynVal.text = str(self.likes)
instance.parent.ids.dynDC.text = str(self.dcMotor)
instance.parent.ids.dynServo.text = str(self.servoMotor)
instance.parent.ids.dynMin.text = str(self.minRatio)
self.remove_widget(self.mpl_canvas)
def released(self, instance, inrText):
if str(inrText).upper() == 'START':
instance.parent.ids.s_img.source = Curr_Path + sep + 'Background' + sep + "Start_Btn.png"
print('Released: ', str(instance.parent.ids.s_img.text).upper())
elif str(inrText).upper() == 'STATS':
instance.parent.ids.st_img.source = Curr_Path + sep + 'Background' + sep + "Stats_Btn.png"
print('Released: ', str(instance.parent.ids.st_img.text).upper())
else:
instance.parent.ids.lk_img.source = Curr_Path + sep + 'Background' + sep + "Likes_Btn.png"
print('Released: ', str(instance.parent.ids.lk_img.text).upper())
class CustomApp(MDApp):
def build(self):
return MainInterface()
if __name__ == "__main__":
custApp = CustomApp()
custApp.run()

view raw

main.py

hosted with ❤ by GitHub

Let us explore the main script now.

def getRealTimeIoT():
    try:
        # Let's pass this to our map section
        df = x1.conStream(var1, DInd)

        print('Data:')
        print(str(df))

        return df
    except Exception as e:
        x = str(e)
        print(x)

        df = p.DataFrame()

        return df

The above function will invoke the streaming class to consume the mock IoT live events as a pandas dataframe from the Ably queue.

class MainInterface(FloatLayout):

    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self.data = getRealTimeIoT()
        self.likes = 0
        self.dcMotor = 0
        self.servoMotor = 0
        self.minRatio = 0
        plt.subplots_adjust(bottom=0.19)

        #self.fig, self.ax = plt.subplots(1,1, figsize=(6.5,10))
        self.fig, self.ax = plt.subplots()
        self.mpl_canvas = self.fig.canvas

Application is instantiating the main class & assignments of all the critical variables, including the matplotlib class.

    def pressed(self, instance, inText, SM):

        if str(inText).upper() == 'START':
            instance.parent.ids.s_img.source = Curr_Path + sep + 'Background' + sep + "Pressed_Start_Btn.png"
            print('In Pressed: ', str(instance.parent.ids.s_img.text).upper())
            if ((SM.current == "background_2") or (SM.current == "background_3")):
                SM.transition.direction = "right"
            SM.current= "background_1"
            Clock.unschedule(self.update)
            self.remove_widget(self.mpl_canvas)

We’ve taken one of the button events & captured how the application will behave once someone clicks the Start button & how it will bring all the corresponding elements of a static page. It also explained the transition type between screens.

        elif str(inText).upper() == 'STATS':

            instance.parent.ids.st_img.source = Curr_Path + sep + 'Background' + sep + "Pressed_Stats_Btn.png"
            print('In Pressed: ', str(instance.parent.ids.st_img.text).upper())
            if (SM.current == "background_1"):
                SM.transition.direction = "left"
            elif (SM.current == "background_3"):
                SM.transition.direction = "right"
            SM.current= "background_2"
            Clock.schedule_interval(self.update, 0.1)

The next screen invokes the dynamic & real-time content. So, please pay extra attention to the following line –

Clock.schedule_interval(self.update, 0.1)

This line will invoke the update function, which looks like –

    def update(self, *args):
        self.data = self.on_data(self.data)

Here is the logic for the update function, which will invoke another function named – “on_data“.

    def on_data(self, *args):
        self.ax.clear()
        self.data = getRealTimeIoT()

        self.ids.lk_img_1.source = Curr_Path + sep + 'Background' + sep + "Likes_Btn.png"
        self.likes = self.getMaxLike(self.data)
        self.ids.dynVal.text = str(self.likes)
        self.ids.lk_img_1.source = ''
        self.ids.lk_img_1.source = Curr_Path + sep + 'Background' + sep + "Likes_Btn_R.png"

        self.dcMotor = self.getMaxDCMotor(self.data)
        self.ids.dynDC.text = str(self.dcMotor)

        self.servoMotor = self.getMaxServoMotor(self.data)
        self.ids.dynServo.text = str(self.servoMotor)

        self.minRatio = self.getDc2ServoMinRatio(self.data)
        self.ids.dynMin.text = str(self.minRatio)

        x = self.data['x_value']
        y1 = self.data['total_1']
        y2 = self.data['total_2']

        self.ax.plot(x, y1, label='Channel 1', linewidth=5.0)
        self.ax.plot(x, y2, label='Channel 2', linewidth=5.0)

        self.mpl_canvas.draw_idle()

        box = self.ids.box
        box.clear_widgets()
        box.add_widget(self.mpl_canvas)

        return self.data

The above crucial line shows how we capture the live calculation & assign them into matplotlib plots & finally assign that figure canvas of matplotlib to a box widget as per our size & display the change content whenever it invokes this method.

Rests of the functions are pretty self-explanatory. So, I’m not going to discuss them.


Run:

Let’s run the app & see the output –

STEP – 1

Triggering the mock IoT App

STEP – 2

Triggering the iOS App

STEP – 3


So, we’ve done it.

You will get the complete codebase in the following Github link.

I’ll bring some more exciting topic in the coming days from the Python verse. Please share & subscribe my post & let me know your feedback.

Till then, Happy Avenging!


Note: All the data & scenario posted here are representational data & scenarios & available over the internet & for educational purpose only. Some of the images (except my photo) that we’ve used are available over the net. We don’t claim the ownership of these images. There is an always room for improvement & especially all the GUI components size & position that will be dynamic in nature by defining self.width along with some constant values.

Predicting real-time Covid-19 forecast by analyzing time-series data using Facebook machine-learning API

Hello Guys,

Today, I’ll share one of the important posts on predicting data using facebook’s relatively new machine-learning-based API. I find this API is interesting as to how it can build & anticipate the outcome.

We’ll be using one of the most acceptable API-based sources for Covid-19 & I’ll be sharing the link over here.

We’ll be using the prophet-API developed by Facebook to predict the data. You will get the details from this link.

Architecture

Now, let’s explore the architecture shared above.

As you can see that the application will consume the data from the third-party API named “about-corona,” & the python application will clean & transform the data. The application will send the clean data to the Facebook API (prophet) built on the machine-learning algorithm. This API is another effective time-series analysis platform given to the data scientist community.

Once the application receives the predicted model, it will visualize them using plotly & matplotlib.


I would request you to please check the demo of this application just for your reference.

Demo Run

We’ll do a time series analysis. Let us understand the basic concept of time series.

Time series is a series of data points indexed (or listed or graphed) in time order.

Therefore, the data organized by relatively deterministic timestamps and potentially compared with random sample data contain additional information that we can leverage for our business use case to make a better decision.

To use the prophet API, one needs to use & transform their data cleaner & should contain two fields (ds & y).

Let’s check one such use case since our source has plenty of good data points to decide. We’ve daily data of newly infected covid patients based on countries, as shown below –

Covid Cases

And, our clean class will transform the data into two fields –

Transformed Data

Once we fit the data into the prophet model, it will generate some additional columns, which will be used for prediction as shown below –

Generated data from prophet-api

And, a sample prediction based on a similar kind of data would be identical to this –

Sample Prediction

Let us understand what packages we need to install to prepare this application –

Installing Dependency Packages – I
Installing Dependency Packages – II

And, here is the packages –

pip install pandas
pip install matplotlib
pip install prophet

Let us now revisit the code –

1. clsConfig.py ( This native Python script contains the configuration entries. )


#####################################################
#### Written By: SATYAKI DE ####
#### Written On: 26-Jul-2021 ####
#### ####
#### Objective: This script is a config ####
#### file, contains all the keys for ####
#### for Prophet API. Application will ####
#### process these information & perform ####
#### the call to our newly developed with ####
#### APIs developed by Facebook & a open-source ####
#### project called "About-Corona". ####
#####################################################
import os
import platform as pl
class clsConfig(object):
Curr_Path = os.path.dirname(os.path.realpath(__file__))
os_det = pl.system()
if os_det == "Windows":
sep = '\\'
else:
sep = '/'
conf = {
'APP_ID': 1,
"URL":"https://corona-api.com/countries/&quot;,
"appType":"application/json",
"conType":"keep-alive",
"limRec": 10,
"CACHE":"no-cache",
"coList": "DE, IN, US, CA, GB, ID, BR",
"LOG_PATH":Curr_Path + sep + 'log' + sep,
"MAX_RETRY": 3,
"FNC": "NewConfirmed",
"TMS": "ReportedDate",
"FND": "NewDeaths"
}

view raw

clsConfig.py

hosted with ❤ by GitHub

We’re not going to discuss anything specific to this script.

2. clsL.py ( This native Python script logs the application. )


#####################################################
#### Written By: SATYAKI DE ####
#### Written On: 26-Jul-2021 ####
#### ####
#### Objective: This script is a log ####
#### file, that is useful for debugging purpose. ####
#### ####
#####################################################
import pandas as p
import os
import platform as pl
class clsL(object):
def __init__(self):
self.path = os.path.dirname(os.path.realpath(__file__))
def logr(self, Filename, Ind, df, subdir=None, write_mode='w', with_index='N'):
try:
x = p.DataFrame()
x = df
sd = subdir
os_det = pl.system()
if sd == None:
if os_det == "windows":
fullFileName = self.path + '\\' + Filename
else:
fullFileName = self.path + '/' + Filename
else:
if os_det == "windows":
fullFileName = self.path + '\\' + sd + '\\' + Filename
else:
fullFileName = self.path + '/' + sd + '/' + Filename
if (with_index == 'N'):
if ((Ind == 'Y') & (write_mode == 'w')):
x.to_csv(fullFileName, index=False)
else:
x.to_csv(fullFileName, index=False, mode=write_mode, header=None)
else:
if ((Ind == 'Y') & (write_mode == 'w')):
x.to_csv(fullFileName)
else:
x.to_csv(fullFileName, mode=write_mode, header=None)
return 0
except Exception as e:
y = str(e)
print(y)
return 3

view raw

clsL.py

hosted with ❤ by GitHub

Based on the operating system, the log class will capture potential information under the “log” directory in the form of csv for later reference purposes.

3. clsForecast.py ( This native Python script will clean & transform the data. )


##############################################
#### Written By: SATYAKI DE ####
#### Written On: 26-Jul-2021 ####
#### Modified On 26-Jul-2021 ####
#### ####
#### Objective: Calling Data Cleaning API ####
##############################################
import json
from clsConfig import clsConfig as cf
import requests
import logging
import time
import pandas as p
import clsL as cl
from prophet import Prophet
class clsForecast:
def __init__(self):
self.fnc = cf.conf['FNC']
self.fnd = cf.conf['FND']
self.tms = cf.conf['TMS']
def forecastNewConfirmed(self, srcDF, debugInd, varVa):
try:
fnc = self.fnc
tms = self.tms
var = varVa
debug_ind = debugInd
countryISO = ''
df_M = p.DataFrame()
dfWork = srcDF
# Initiating Log class
l = cl.clsL()
#Extracting the unique country name
unqCountry = dfWork['CountryCode'].unique()
for i in unqCountry:
countryISO = i.strip()
print('Country Name: ' + countryISO)
df_Comm = dfWork[[tms, fnc]]
l.logr('13.df_Comm_' + var + '.csv', debug_ind, df_Comm, 'log')
# Aligning as per Prophet naming convention
df_Comm.columns = ['ds', 'y']
l.logr('14.df_Comm_Mod_' + var + '.csv', debug_ind, df_Comm, 'log')
return df_Comm
except Exception as e:
x = str(e)
print(x)
logging.info(x)
df = p.DataFrame()
return df
def forecastNewDead(self, srcDF, debugInd, varVa):
try:
fnd = self.fnd
tms = self.tms
var = varVa
debug_ind = debugInd
countryISO = ''
df_M = p.DataFrame()
dfWork = srcDF
# Initiating Log class
l = cl.clsL()
#Extracting the unique country name
unqCountry = dfWork['CountryCode'].unique()
for i in unqCountry:
countryISO = i.strip()
print('Country Name: ' + countryISO)
df_Comm = dfWork[[tms, fnd]]
l.logr('17.df_Comm_' + var + '.csv', debug_ind, df_Comm, 'log')
# Aligning as per Prophet naming convention
df_Comm.columns = ['ds', 'y']
l.logr('18.df_Comm_Mod_' + var + '.csv', debug_ind, df_Comm, 'log')
return df_Comm
except Exception as e:
x = str(e)
print(x)
logging.info(x)
df = p.DataFrame()
return df

view raw

clsForecast.py

hosted with ❤ by GitHub

Let’s explore the critical snippet out of this script –

df_Comm = dfWork[[tms, fnc]]

Now, the application will extract only the relevant columns to proceed.

df_Comm.columns = ['ds', 'y']

It is now assigning specific column names, which is a requirement for prophet API.

4. clsCovidAPI.py ( This native Python script will call the Covid-19 API. )


##############################################
#### Written By: SATYAKI DE ####
#### Written On: 26-Jul-2021 ####
#### Modified On 26-Jul-2021 ####
#### ####
#### Objective: Calling Covid-19 API ####
##############################################
import json
from clsConfig import clsConfig as cf
import requests
import logging
import time
import pandas as p
import clsL as cl
class clsCovidAPI:
def __init__(self):
self.url = cf.conf['URL']
self.azure_cache = cf.conf['CACHE']
self.azure_con = cf.conf['conType']
self.type = cf.conf['appType']
self.typVal = cf.conf['coList']
self.max_retries = cf.conf['MAX_RETRY']
def searchQry(self, varVa, debugInd):
try:
url = self.url
api_cache = self.azure_cache
api_con = self.azure_con
type = self.type
typVal = self.typVal
max_retries = self.max_retries
var = varVa
debug_ind = debugInd
cnt = 0
df_M = p.DataFrame()
# Initiating Log class
l = cl.clsL()
payload = {}
strMsg = 'Input Countries: ' + str(typVal)
logging.info(strMsg)
headers = {}
countryList = typVal.split(',')
for i in countryList:
# Failed case retry
retries = 1
success = False
val = ''
try:
while not success:
# Getting response from web service
try:
df_conv = p.DataFrame()
strCountryUrl = url + str(i).strip()
print('Country: ' + str(i).strip())
print('Url: ' + str(strCountryUrl))
str1 = 'Url: ' + str(strCountryUrl)
logging.info(str1)
response = requests.request("GET", strCountryUrl, headers=headers, params=payload)
ResJson = response.text
#jdata = json.dumps(ResJson)
RJson = json.loads(ResJson)
df_conv = p.io.json.json_normalize(RJson)
df_conv.drop(['data.timeline'], axis=1, inplace=True)
df_conv['DummyKey'] = 1
df_conv.set_index('DummyKey')
l.logr('1.df_conv_' + var + '.csv', debug_ind, df_conv, 'log')
# Extracting timeline part separately
Rjson_1 = RJson['data']['timeline']
df_conv2 = p.io.json.json_normalize(Rjson_1)
df_conv2['DummyKey'] = 1
df_conv2.set_index('DummyKey')
l.logr('2.df_conv_timeline_' + var + '.csv', debug_ind, df_conv2, 'log')
# Doing Cross Join
df_fin = df_conv.merge(df_conv2, on='DummyKey', how='outer')
l.logr('3.df_fin_' + var + '.csv', debug_ind, df_fin, 'log')
# Merging with the previous Country Code data
if cnt == 0:
df_M = df_fin
else:
d_frames = [df_M, df_fin]
df_M = p.concat(d_frames)
cnt += 1
strCountryUrl = ''
if str(response.status_code)[:1] == '2':
success = True
else:
wait = retries * 2
print("retries Fail! Waiting " + str(wait) + " seconds and retrying!")
str_R1 = "retries Fail! Waiting " + str(wait) + " seconds and retrying!"
logging.info(str_R1)
time.sleep(wait)
retries += 1
# Checking maximum retries
if retries == max_retries:
success = True
raise Exception
except Exception as e:
x = str(e)
print(x)
logging.info(x)
pass
except Exception as e:
pass
l.logr('4.df_M_' + var + '.csv', debug_ind, df_M, 'log')
return df_M
except Exception as e:
x = str(e)
print(x)
logging.info(x)
df = p.DataFrame()
return df

view raw

clsCovidAPI.py

hosted with ❤ by GitHub

Let us explore the key snippet –

countryList = typVal.split(',')

The application will fetch individual country names into a list based on the input lists from the configure script.

response = requests.request("GET", strCountryUrl, headers=headers, params=payload)
ResJson = response.text

RJson = json.loads(ResJson)

df_conv = p.io.json.json_normalize(RJson)
df_conv.drop(['data.timeline'], axis=1, inplace=True)
df_conv['DummyKey'] = 1
df_conv.set_index('DummyKey')

The application will extract the elements & normalize the JSON & convert that to a pandas dataframe & also added one dummy column, which will use for the later purpose to merge the data from another set.

# Extracting timeline part separately
Rjson_1 = RJson['data']['timeline']

df_conv2 = p.io.json.json_normalize(Rjson_1)
df_conv2['DummyKey'] = 1
df_conv2.set_index('DummyKey')

Now, the application will take the nested element & normalize that as per granular level. Also, it added the dummy column to join both of these data together.

# Doing Cross Join
df_fin = df_conv.merge(df_conv2, on='DummyKey', how='outer')

The application will Merge both the data sets to get the complete denormalized data for our use cases.

# Merging with the previous Country Code data
if cnt == 0:
    df_M = df_fin
else:
    d_frames = [df_M, df_fin]
    df_M = p.concat(d_frames)

This entire deserializing execution happens per country. Hence, the above snippet will create an individual sub-group based on the country & later does union to all the sets.

if str(response.status_code)[:1] == '2':
    success = True
else:
    wait = retries * 2
    print("retries Fail! Waiting " + str(wait) + " seconds and retrying!")
    str_R1 = "retries Fail! Waiting " + str(wait) + " seconds and retrying!"
    logging.info(str_R1)
    time.sleep(wait)
    retries += 1

# Checking maximum retries
if retries == max_retries:
    success = True
    raise  Exception

If any calls to source API fails, the application will retrigger after waiting for a specific time until it reaches its maximum capacity.

5. callPredictCovidAnalysis.py ( This native Python script is the main one to predict the Covid. )


##############################################
#### Written By: SATYAKI DE ####
#### Written On: 26-Jul-2021 ####
#### Modified On 26-Jul-2021 ####
#### ####
#### Objective: Calling multiple API's ####
#### that including Prophet-API developed ####
#### by Facebook for future prediction of ####
#### Covid-19 situations in upcoming days ####
#### for world's major hotspots. ####
##############################################
import json
import clsCovidAPI as ca
from clsConfig import clsConfig as cf
import datetime
import logging
import clsL as cl
import clsForecast as f
from prophet import Prophet
from prophet.plot import plot_plotly, plot_components_plotly
import matplotlib.pyplot as plt
import pandas as p
# Disbling Warning
def warn(*args, **kwargs):
pass
import warnings
warnings.warn = warn
# Initiating Log class
l = cl.clsL()
# Helper Function that removes underscores
def countryDet(inputCD):
try:
countryCD = inputCD
if str(countryCD) == 'DE':
cntCD = 'Germany'
elif str(countryCD) == 'BR':
cntCD = 'Brazil'
elif str(countryCD) == 'GB':
cntCD = 'United Kingdom'
elif str(countryCD) == 'US':
cntCD = 'United States'
elif str(countryCD) == 'IN':
cntCD = 'India'
elif str(countryCD) == 'CA':
cntCD = 'Canada'
elif str(countryCD) == 'ID':
cntCD = 'Indonesia'
else:
cntCD = 'N/A'
return cntCD
except:
cntCD = 'N/A'
return cntCD
def plot_picture(inputDF, debug_ind, var, countryCD, stat):
try:
iDF = inputDF
# Lowercase the column names
iDF.columns = [c.lower() for c in iDF.columns]
# Determine which is Y axis
y_col = [c for c in iDF.columns if c.startswith('y')][0]
# Determine which is X axis
x_col = [c for c in iDF.columns if c.startswith('ds')][0]
# Data Conversion
iDF['y'] = iDF[y_col].astype('float')
iDF['ds'] = iDF[x_col].astype('datetime64[ns]')
# Forecast calculations
# Decreasing the changepoint_prior_scale to 0.001 to make the trend less flexible
m = Prophet(n_changepoints=20, yearly_seasonality=True, changepoint_prior_scale=0.001)
m.fit(iDF)
forecastDF = m.make_future_dataframe(periods=365)
forecastDF = m.predict(forecastDF)
l.logr('15.forecastDF_' + var + '_' + countryCD + '.csv', debug_ind, forecastDF, 'log')
df_M = forecastDF[['ds', 'yhat', 'yhat_lower', 'yhat_upper']]
l.logr('16.df_M_' + var + '_' + countryCD + '.csv', debug_ind, df_M, 'log')
#m.plot_components(df_M)
# Getting Full Country Name
cntCD = countryDet(countryCD)
# Draw forecast results
lbl = str(cntCD) + ' – Covid – ' + stat
m.plot(df_M, xlabel = 'Date', ylabel = lbl)
# Combine all graps in the same page
plt.title(f'Covid Forecasting')
plt.title(lbl)
plt.ylabel('Millions')
plt.show()
return 0
except Exception as e:
x = str(e)
print(x)
return 1
def countrySpecificDF(counryDF, val):
try:
countryName = val
df = counryDF
df_lkpFile = df[(df['CountryCode'] == val)]
return df_lkpFile
except:
df = p.DataFrame()
return df
def main():
try:
var1 = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
print('*' *60)
DInd = 'Y'
NC = 'New Confirmed'
ND = 'New Dead'
SM = 'data process Successful!'
FM = 'data process Failure!'
print("Calling the custom Package for large file splitting..")
print('Start Time: ' + str(var1))
countryList = str(cf.conf['coList']).split(',')
# Initiating Log Class
general_log_path = str(cf.conf['LOG_PATH'])
# Enabling Logging Info
logging.basicConfig(filename=general_log_path + 'CovidAPI.log', level=logging.INFO)
# Create the instance of the Covid API Class
x1 = ca.clsCovidAPI()
# Let's pass this to our map section
retDF = x1.searchQry(var1, DInd)
retVal = int(retDF.shape[0])
if retVal > 0:
print('Successfully Covid Data Extracted from the API-source.')
else:
print('Something wrong with your API-source!')
# Extracting Skeleton Data
df = retDF[['data.code', 'date', 'deaths', 'confirmed', 'recovered', 'new_confirmed', 'new_recovered', 'new_deaths', 'active']]
df.columns = ['CountryCode', 'ReportedDate', 'TotalReportedDead', 'TotalConfirmedCase', 'TotalRecovered', 'NewConfirmed', 'NewRecovered', 'NewDeaths', 'ActiveCaases']
df.dropna()
print('Returned Skeleton Data Frame: ')
print(df)
l.logr('5.df_' + var1 + '.csv', DInd, df, 'log')
# Working with forecast
# Create the instance of the Forecast API Class
x2 = f.clsForecast()
# Fetching each country name & then get the details
cnt = 6
for i in countryList:
try:
cntryIndiv = i.strip()
print('Country Porcessing: ' + str(cntryIndiv))
# Creating dataframe for each country
# Germany Main DataFrame
dfCountry = countrySpecificDF(df, cntryIndiv)
l.logr(str(cnt) + '.df_' + cntryIndiv + '_' + var1 + '.csv', DInd, dfCountry, 'log')
# Let's pass this to our map section
retDFGenNC = x2.forecastNewConfirmed(dfCountry, DInd, var1)
statVal = str(NC)
a1 = plot_picture(retDFGenNC, DInd, var1, cntryIndiv, statVal)
retDFGenNC_D = x2.forecastNewDead(dfCountry, DInd, var1)
statVal = str(ND)
a2 = plot_picture(retDFGenNC_D, DInd, var1, cntryIndiv, statVal)
cntryFullName = countryDet(cntryIndiv)
if (a1 + a2) == 0:
oprMsg = cntryFullName + ' ' + SM
print(oprMsg)
else:
oprMsg = cntryFullName + ' ' + FM
print(oprMsg)
# Resetting the dataframe value for the next iteration
dfCountry = p.DataFrame()
cntryIndiv = ''
oprMsg = ''
cntryFullName = ''
a1 = 0
a2 = 0
statVal = ''
cnt += 1
except Exception as e:
x = str(e)
print(x)
var2 = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
print('End Time: ' + str(var2))
print('*' *60)
except Exception as e:
x = str(e)
if __name__ == "__main__":
main()

Let us explore the key snippet –

def countryDet(inputCD):
    try:
        countryCD = inputCD

        if str(countryCD) == 'DE':
            cntCD = 'Germany'
        elif str(countryCD) == 'BR':
            cntCD = 'Brazil'
        elif str(countryCD) == 'GB':
            cntCD = 'United Kingdom'
        elif str(countryCD) == 'US':
            cntCD = 'United States'
        elif str(countryCD) == 'IN':
            cntCD = 'India'
        elif str(countryCD) == 'CA':
            cntCD = 'Canada'
        elif str(countryCD) == 'ID':
            cntCD = 'Indonesia'
        else:
            cntCD = 'N/A'

        return cntCD
    except:
        cntCD = 'N/A'

        return cntCD

The application is extracting the full country name based on ISO country code.

# Lowercase the column names
iDF.columns = [c.lower() for c in iDF.columns]
# Determine which is Y axis
y_col = [c for c in iDF.columns if c.startswith('y')][0]
# Determine which is X axis
x_col = [c for c in iDF.columns if c.startswith('ds')][0]

# Data Conversion
iDF['y'] = iDF[y_col].astype('float')
iDF['ds'] = iDF[x_col].astype('datetime64[ns]')

The above script will convert all the column names in lower letters & then convert & cast them with the appropriate data type.

# Forecast calculations
# Decreasing the changepoint_prior_scale to 0.001 to make the trend less flexible
m = Prophet(n_changepoints=20, yearly_seasonality=True, changepoint_prior_scale=0.001)
m.fit(iDF)

forecastDF = m.make_future_dataframe(periods=365)

forecastDF = m.predict(forecastDF)

l.logr('15.forecastDF_' + var + '_' + countryCD + '.csv', debug_ind, forecastDF, 'log')

df_M = forecastDF[['ds', 'yhat', 'yhat_lower', 'yhat_upper']]

l.logr('16.df_M_' + var + '_' + countryCD + '.csv', debug_ind, df_M, 'log')

The above snippet will use the machine-learning driven prophet-API, where the application will fit the model & then predict based on the existing data for a year. Also, we’ve identified the number of changepoints. By default, the prophet-API adds 25 changepoints to the initial 80% of the data set that trend is less flexible. 

Prophet allows you to adjust the trend in case there is an overfit or underfit. changepoint_prior_scale helps adjust the strength of the movement & decreasing the changepoint_prior_scale to 0.001 to make it less flexible.

def countrySpecificDF(counryDF, val):
    try:
        countryName = val
        df = counryDF

        df_lkpFile = df[(df['CountryCode'] == val)]

        return df_lkpFile
    except:
        df = p.DataFrame()

        return df

The application is fetching & creating the country-specific dataframe.

for i in countryList:
    try:
        cntryIndiv = i.strip()

        print('Country Porcessing: ' + str(cntryIndiv))

        # Creating dataframe for each country
        # Germany Main DataFrame
        dfCountry = countrySpecificDF(df, cntryIndiv)
        l.logr(str(cnt) + '.df_' + cntryIndiv + '_' + var1 + '.csv', DInd, dfCountry, 'log')

        # Let's pass this to our map section
        retDFGenNC = x2.forecastNewConfirmed(dfCountry, DInd, var1)

        statVal = str(NC)

        a1 = plot_picture(retDFGenNC, DInd, var1, cntryIndiv, statVal)

        retDFGenNC_D = x2.forecastNewDead(dfCountry, DInd, var1)

        statVal = str(ND)

        a2 = plot_picture(retDFGenNC_D, DInd, var1, cntryIndiv, statVal)

        cntryFullName = countryDet(cntryIndiv)

        if (a1 + a2) == 0:
            oprMsg = cntryFullName + ' ' + SM
            print(oprMsg)
        else:
            oprMsg = cntryFullName + ' ' + FM
            print(oprMsg)

        # Resetting the dataframe value for the next iteration
        dfCountry = p.DataFrame()
        cntryIndiv = ''
        oprMsg = ''
        cntryFullName = ''
        a1 = 0
        a2 = 0
        statVal = ''

        cnt += 1
    except Exception as e:
        x = str(e)
        print(x)

The above snippet will call the function to predict the data & then predict the visual representation based on plotting the data points.


Let us run the application –

Application Run

And, it will generate the visual representation as follows –

Application Run – Continue

And, here is the folder structure –

Directory Structure

Let’s explore the comparison study & try to find out the outcome –

Option – 1
Option – 2
Option – 3
Option -4

Let us analyze from the above visual data-point.


Conclusion:

Let’s explore the comparison study & try to find out the outcome –

  1. India may see a rise of new covid cases & it might cross the mark 400,000 during June 2022 & would be the highest among the countries that we’ve considered here including India, Indonesia, Germany, US, UK, Canada & Brazil. The second worst affected country might be the US during the same period. The third affected country will be Indonesia during the same period.
  2. Canada will be the least affected country during June 2022. The figure should be within 12,000.
  3. However, death case wise India is not only the leading country. The US, India & Brazil will see almost 4000 or slightly over the 4000 marks.

So, we’ve done it.


You will get the complete codebase in the following Github link.

I’ll bring some more exciting topic in the coming days from the Python verse.

Till then, Happy Avenging! 😀


Note: All the data & scenario posted here are representational data & scenarios & available over the internet & for educational purpose only.

One more thing you need to understand is that this prediction based on limited data points. The actual event may happen differently. Ideally, countries are taking a cue from this kind of analysis & are initiating appropriate measures to avoid the high-curve. And, that is one of the main objective of time series analysis.

There is always a room for improvement of this kind of models & the solution associated with it. I’ve shown the basic ways to achieve the same for the education purpose only.

Calling Twilio Voice API to deliver custom voice calls to the subscriber

Hello Guys!

It’s time to share another installment of fun & exciting posts from the world of Python-verse.

Today, We’ll be leveraging the Twilio voice API to send custom messages through phone calls directly. This service is beneficial on many occasions, including alerting the customer of potential payment reminders to pending product delivery calls to warehouse managers.


Dependent Packages:

Let us explore what packages we need for this –

Dependent Package Installation

The commands for your reference –

pip install twilio
pip install pandas

Also, you need to subscribe/register in Twilio. I’ve already shown you what to do about that. You can refer to my old post to know more about it. However, you need to reserve one phone number from which you will be calling your customers.

Buying phone numbers

As you can see, I’ve reserved one phone number to demonstrate this use case.


Let us explore the key codebase –

  1. clsVoiceAPI.py (Main class invoking the voice API)