Detecting real-time human emotions using Open-CV, DeepFace & Python

Hi Guys,

Today, I’ll be using another exciting installment of Computer Vision. Our focus will be on getting a sense of human emotions. Let me explain. This post will demonstrate how to read/detect human emotions by analyzing computer vision videos. We will be using part of a Bengali Movie called “Ganashatru (An enemy of the people)” entirely for educational purposes & also as a tribute to the great legendary director late Satyajit Roy. To know more about him, please click the following link.

Why don’t we see the demo first before jumping into the technical details?

Demo

Architecture:

Let us understand the architecture –

Process Flow

From the above diagram, one can see that the application, which uses both the Open-CV & DeepFace, analyzes individual frames from the source. Then predicts the emotions & adds the label in the target B&W frames. Finally, it creates another video by correctly mixing the source audio.

Python Packages:

Following are the python packages that are necessary to develop this brilliant use case –

pip install deepface
pip install opencv-python
pip install ffpyplayer

CODE:

Let us now understand the code. For this use case, we will only discuss three python scripts. However, we need more than these three. However, we have already discussed them in some of the early posts. Hence, we will skip them here.

  • clsConfig.py (This script will play the video along with audio in sync.)


################################################
#### Written By: SATYAKI DE ####
#### Written On: 15-May-2020 ####
#### Modified On: 22-Apr-2022 ####
#### ####
#### Objective: This script is a config ####
#### file, contains all the keys for ####
#### Machine-Learning & streaming dashboard.####
#### ####
################################################
import os
import platform as pl
class clsConfig(object):
Curr_Path = os.path.dirname(os.path.realpath(__file__))
os_det = pl.system()
if os_det == "Windows":
sep = '\\'
else:
sep = '/'
conf = {
'APP_ID': 1,
'ARCH_DIR': Curr_Path + sep + 'arch' + sep,
'PROFILE_PATH': Curr_Path + sep + 'profile' + sep,
'LOG_PATH': Curr_Path + sep + 'log' + sep,
'REPORT_PATH': Curr_Path + sep + 'report',
'FILE_NAME': 'GonoshotruClimax',
'SRC_PATH': Curr_Path + sep + 'data' + sep,
'FINAL_PATH': Curr_Path + sep + 'Target' + sep,
'APP_DESC_1': 'Video Emotion Capture!',
'DEBUG_IND': 'N',
'INIT_PATH': Curr_Path,
'SUBDIR': 'data',
'SEP': sep,
'VIDEO_FILE_EXTN': '.mp4',
'AUDIO_FILE_EXTN': '.mp3',
'IMAGE_FILE_EXTN': '.jpg',
'TITLE': "Gonoshotru – Emotional Analysis"
}

view raw

clsConfig.py

hosted with ❤ by GitHub

All the above inputs are generic & used as normal parameters.

  • clsFaceEmotionDetect.py (This python class will track the human emotions after splitting the audio from the video & put that label on top of the video frame.)


##################################################
#### Written By: SATYAKI DE ####
#### Written On: 17-Apr-2022 ####
#### Modified On 20-Apr-2022 ####
#### ####
#### Objective: This python class will ####
#### track the human emotions after splitting ####
#### the audio from the video & put that ####
#### label on top of the video frame. ####
#### ####
##################################################
from imutils.video import FileVideoStream
from imutils.video import FPS
import numpy as np
import imutils
import time
import cv2
from clsConfig import clsConfig as cf
from deepface import DeepFace
import clsL as cl
import subprocess
import sys
import os
# Initiating Log class
l = cl.clsL()
class clsFaceEmotionDetect:
def __init__(self):
self.sep = str(cf.conf['SEP'])
self.Curr_Path = str(cf.conf['INIT_PATH'])
self.FileName = str(cf.conf['FILE_NAME'])
self.VideoFileExtn = str(cf.conf['VIDEO_FILE_EXTN'])
self.ImageFileExtn = str(cf.conf['IMAGE_FILE_EXTN'])
def convert_video_to_audio_ffmpeg(self, video_file, output_ext="mp3"):
try:
"""Converts video to audio directly using `ffmpeg` command
with the help of subprocess module"""
filename, ext = os.path.splitext(video_file)
subprocess.call(["ffmpeg", "-y", "-i", video_file, f"{filename}.{output_ext}"],
stdout=subprocess.DEVNULL,
stderr=subprocess.STDOUT)
return 0
except Exception as e:
x = str(e)
print('Error: ', x)
return 1
def readEmotion(self, debugInd, var):
try:
sep = self.sep
Curr_Path = self.Curr_Path
FileName = self.FileName
VideoFileExtn = self.VideoFileExtn
ImageFileExtn = self.ImageFileExtn
font = cv2.FONT_HERSHEY_SIMPLEX
# Load Video
videoFile = Curr_Path + sep + 'Video' + sep + FileName + VideoFileExtn
temp_path = Curr_Path + sep + 'Temp' + sep
# Extracting the audio from the source video
x = self.convert_video_to_audio_ffmpeg(videoFile)
if x == 0:
print('Successfully Audio extracted from the source file!')
else:
print('Failed to extract the source audio!')
# Loading the haarcascade xml class
faceCascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
# start the file video stream thread and allow the buffer to
# start to fill
print("[INFO] Starting video file thread…")
fvs = FileVideoStream(videoFile).start()
time.sleep(1.0)
cnt = 0
# start the FPS timer
fps = FPS().start()
try:
# loop over frames from the video file stream
while fvs.more():
cnt += 1
# grab the frame from the threaded video file stream, resize
# it, and convert it to grayscale (while still retaining 3
# channels)
try:
frame = fvs.read()
except Exception as e:
x = str(e)
print('Error: ', x)
frame = imutils.resize(frame, width=720)
cv2.imshow("Gonoshotru – Source", frame)
# Enforce Detection to False will continue the sequence even when there is no face
result = DeepFace.analyze(frame, enforce_detection=False, actions = ['emotion'])
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
frame = np.dstack([frame, frame, frame])
faces = faceCascade.detectMultiScale(image=frame, scaleFactor=1.1, minNeighbors=4, minSize=(80,80), flags=cv2.CASCADE_SCALE_IMAGE)
# Draw a rectangle around the face
for (x, y, w, h) in faces:
cv2.rectangle(frame, (x, y), (x + w, y + h), (0,255,0), 2)
# Use puttext method for inserting live emotion on video
cv2.putText(frame, result['dominant_emotion'], (50,390), font, 3, (0,0,255), 2, cv2.LINE_4)
# display the size of the queue on the frame
#cv2.putText(frame, "Queue Size: {}".format(fvs.Q.qsize()), (10, 30), font, 0.6, (0, 255, 0), 2)
cv2.imwrite(temp_path+'frame-' + str(cnt) + ImageFileExtn, frame)
# show the frame and update the FPS counter
cv2.imshow("Gonoshotru – Emotional Analysis", frame)
fps.update()
if cv2.waitKey(2) & 0xFF == ord('q'):
break
except Exception as e:
x = str(e)
print('Error: ', x)
print('No more frame exists!')
# stop the timer and display FPS information
fps.stop()
print("[INFO] Elasped Time: {:.2f}".format(fps.elapsed()))
print("[INFO] Approx. FPS: {:.2f}".format(fps.fps()))
# do a bit of cleanup
cv2.destroyAllWindows()
fvs.stop()
return 0
except Exception as e:
x = str(e)
print('Error: ', x)
return 1

Key snippets from the above scripts –

def convert_video_to_audio_ffmpeg(self, video_file, output_ext="mp3"):
    try:
        """Converts video to audio directly using `ffmpeg` command
        with the help of subprocess module"""
        filename, ext = os.path.splitext(video_file)
        subprocess.call(["ffmpeg", "-y", "-i", video_file, f"{filename}.{output_ext}"],
                        stdout=subprocess.DEVNULL,
                        stderr=subprocess.STDOUT)

        return 0
    except Exception as e:
        x = str(e)
        print('Error: ', x)

        return 1

The above snippet represents an Audio extraction function that will extract the audio from the source file & store it in the specified directory.

# Loading the haarcascade xml class
faceCascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')

Now, Loading is one of the best classes for face detection, which our applications require.

fvs = FileVideoStream(videoFile).start()

Using FileVideoStream will enable our application to process the video faster than cv2.VideoCapture() method.

# start the FPS timer
fps = FPS().start()

The application then invokes the FPS.Start() that will initiate the FPS timer.

# loop over frames from the video file stream
while fvs.more():

The application will check using fvs.more() to find the EOF of the video file. Until then, it will try to read individual frames.

try:
    frame = fvs.read()
except Exception as e:
    x = str(e)
    print('Error: ', x)

The application will read individual frames. In case of any issue, it will capture the correct error without terminating the main program at the beginning. This exception strategy is beneficial when there is no longer any frame to read & yet due to the end frame issue, the entire application throws an error.

frame = imutils.resize(frame, width=720)
cv2.imshow("Gonoshotru - Source", frame)

At this point, the application is resizing the frame for better resolution & performance. Furthermore, identify this video feed as a source.

# Enforce Detection to False will continue the sequence even when there is no face
result = DeepFace.analyze(frame, enforce_detection=False, actions = ['emotion'])

Finally, the application has used the deepface machine-learning API to analyze the subject face & trying to predict its emotions.

frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
frame = np.dstack([frame, frame, frame])

faces = faceCascade.detectMultiScale(image=frame, scaleFactor=1.1, minNeighbors=4, minSize=(80,80), flags=cv2.CASCADE_SCALE_IMAGE)

detectMultiScale function can use to detect the faces. This function will return a rectangle with coordinates (x, y, w, h) around the detected face.

It takes three common arguments — the input image, scaleFactor, and minNeighbours.

scaleFactor specifies how much the image size reduces with each scale. There may be more faces near the camera in a group photo than others. Naturally, such faces would appear more prominent than the ones behind. This factor compensates for that.

minNeighbours specifies how many neighbors each candidate rectangle should have to retain. One may have to tweak these values to get the best results. This parameter specifies the number of neighbors a rectangle should have to be called a face.

# Draw a rectangle around the face
for (x, y, w, h) in faces:
    cv2.rectangle(frame, (x, y), (x + w, y + h), (0,255,0), 2)

As discussed above, the application is now calculating the square’s boundary after receiving the values of x, y, w, & h.

# Use puttext method for inserting live emotion on video
cv2.putText(frame, result['dominant_emotion'], (50,390), font, 3, (0,0,255), 2, cv2.LINE_4)

Finally, capture the dominant emotion from the deepface API & post it on top of the target video.

# display the size of the queue on the frame
cv2.imwrite(temp_path+'frame-' + str(cnt) + ImageFileExtn, frame)

# show the frame and update the FPS counter
cv2.imshow("Gonoshotru - Emotional Analysis", frame)
fps.update()

Also, writing individual frames into a temporary folder, where later they will be consumed & mixed with the source audio.

if cv2.waitKey(2) & 0xFF == ord('q'):
    break

At any given point, if the user wants to quit, the above snippet will allow them by simply pressing either the escape-button or ‘q’-button from the keyboard.

  • clsVideoPlay.py (This script will play the video along with audio in sync.)


###############################################
#### Updated By: SATYAKI DE ####
#### Updated On: 17-Apr-2022 ####
#### ####
#### Objective: This script will play the ####
#### video along with audio in sync. ####
#### ####
###############################################
import os
import platform as pl
import cv2
import numpy as np
import glob
import re
import ffmpeg
import time
from clsConfig import clsConfig as cf
from ffpyplayer.player import MediaPlayer
import logging
os_det = pl.system()
if os_det == "Windows":
sep = '\\'
else:
sep = '/'
class clsVideoPlay:
def __init__(self):
self.fileNmFin = str(cf.conf['FILE_NAME'])
self.final_path = str(cf.conf['FINAL_PATH'])
self.title = str(cf.conf['TITLE'])
self.VideoFileExtn = str(cf.conf['VIDEO_FILE_EXTN'])
def videoP(self, file):
try:
cap = cv2.VideoCapture(file)
player = MediaPlayer(file)
start_time = time.time()
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
_, val = player.get_frame(show=False)
if val == 'eof':
break
cv2.imshow(file, frame)
elapsed = (time.time() start_time) * 1000 # msec
play_time = int(cap.get(cv2.CAP_PROP_POS_MSEC))
sleep = max(1, int(play_time elapsed))
if cv2.waitKey(sleep) & 0xFF == ord("q"):
break
player.close_player()
cap.release()
cv2.destroyAllWindows()
return 0
except Exception as e:
x = str(e)
print('Error: ', x)
return 1
def stream(self, dInd, var):
try:
VideoFileExtn = self.VideoFileExtn
fileNmFin = self.fileNmFin + VideoFileExtn
final_path = self.final_path
title = self.title
FullFileName = final_path + fileNmFin
ret = self.videoP(FullFileName)
if ret == 0:
print('Successfully Played the Video!')
return 0
else:
return 1
except Exception as e:
x = str(e)
print('Error: ', x)
return 1

view raw

clsVideoPlay.py

hosted with ❤ by GitHub

Let us explore the key snippet –

cap = cv2.VideoCapture(file)
player = MediaPlayer(file)

In the above snippet, the application first reads the video & at the same time, it will create an instance of the MediaPlayer.

play_time = int(cap.get(cv2.CAP_PROP_POS_MSEC))

The application uses cv2.CAP_PROP_POS_MSEC to synchronize video and audio.

  • peopleEmotionRead.py (This is the main calling python script that will invoke the class to initiate the model to read the real-time human emotions from video.)


##################################################
#### Written By: SATYAKI DE ####
#### Written On: 17-Jan-2022 ####
#### Modified On 20-Apr-2022 ####
#### ####
#### Objective: This is the main calling ####
#### python script that will invoke the ####
#### clsFaceEmotionDetect class to initiate ####
#### the model to read the real-time ####
#### human emotions from video or even from ####
#### Web-CAM & predict it continuously. ####
##################################################
# We keep the setup code in a different class as shown below.
import clsFaceEmotionDetect as fed
import clsFrame2Video as fv
import clsVideoPlay as vp
from clsConfig import clsConfig as cf
import datetime
import logging
###############################################
### Global Section ###
###############################################
# Instantiating all the three classes
x1 = fed.clsFaceEmotionDetect()
x2 = fv.clsFrame2Video()
x3 = vp.clsVideoPlay()
###############################################
### End of Global Section ###
###############################################
def main():
try:
# Other useful variables
debugInd = 'Y'
var = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
var1 = datetime.datetime.now()
print('Start Time: ', str(var))
# End of useful variables
# Initiating Log Class
general_log_path = str(cf.conf['LOG_PATH'])
# Enabling Logging Info
logging.basicConfig(filename=general_log_path + 'restoreVideo.log', level=logging.INFO)
print('Started Capturing Real-Time Human Emotions!')
# Execute all the pass
r1 = x1.readEmotion(debugInd, var)
r2 = x2.convert2Vid(debugInd, var)
r3 = x3.stream(debugInd, var)
if ((r1 == 0) and (r2 == 0) and (r3 == 0)):
print('Successfully identified human emotions!')
else:
print('Failed to identify the human emotions!')
var2 = datetime.datetime.now()
c = var2 var1
minutes = c.total_seconds() / 60
print('Total difference in minutes: ', str(minutes))
print('End Time: ', str(var1))
except Exception as e:
x = str(e)
print('Error: ', x)
if __name__ == "__main__":
main()

The key-snippet from the above script are as follows –

# Instantiating all the three classes

x1 = fed.clsFaceEmotionDetect()
x2 = fv.clsFrame2Video()
x3 = vp.clsVideoPlay()

As one can see from the above snippet, all the major classes are instantiated & loaded into the memory.

# Execute all the pass
r1 = x1.readEmotion(debugInd, var)
r2 = x2.convert2Vid(debugInd, var)
r3 = x3.stream(debugInd, var)

All the responses are captured into the corresponding variables, which later check for success status.


Let us capture & compare the emotions in a screenshot for better understanding –

Emotion Analysis

So, one can see that most of the frames from the video & above-posted frame correctly identify the human emotions.


FOLDER STRUCTURE:

Here is the folder structure that contains all the files & directories in MAC O/S –

Directory

So, we’ve done it.

You will get the complete codebase in the following Github link.

If you want to know more about this legendary director & his famous work, please visit the following link.

I’ll bring some more exciting topic in the coming days from the Python verse. Please share & subscribe my post & let me know your feedback.

Till then, Happy Avenging! 😀

Note: All the data & scenario posted here are representational data & scenarios & available over the internet & for educational purpose only. Some of the images (except my photo) that we’ve used are available over the net. We don’t claim the ownership of these images. There is an always room for improvement & especially the prediction quality.

Real-time stacked-up coin counts with the help of Computer Vision using Python-based OpenCV.

Hi Guys,

Today, I’ll be using another exciting installment of Computer Vision. Today, our focus will be to get a sense of visual counting. Let me explain. This post will demonstrate how to count the number of stacked-up coins using computer vision. And, we’re going to add more coins to see the number changes.

Why don’t we see the demo first before jumping into the technical details?

Demo

Isn’t it exciting?


Architecture:

Let us understand the architecture –

From the above diagram, one can notice that as raw video feed captured from a specific location at a measured distance. The python-based intelligent application will read the numbers & project on top of the video feed for human validations.

Let me share one more perspective of how you can configure this experiment with another diagram that I prepared for this post.

Setup Process

From the above picture, one can see that a specific distance exists between the camera & the stacked coins as that will influence the single coin width.

You can see how that changed with the following pictures –

This entire test will depend upon many factors to consider to get effective results. I provided the basic demo. However, to make it robust & dynamic, one can dynamically diagnose the distance & individual coin width before starting this project. I felt that part should be machine learning to correctly predict the particular coin width depending upon the length & number of coins stacked. I leave it to you to explore that part.

Then how does the Aruco marker comes into the picture?

Let’s read it from the primary source side –

From: Source

Please refer to the following link if you want to know more.

For our use case, we’ll be using the following aruco marker –

Marker

How will this help us? Because we know the width & height of it. And depending upon the placement & overall pixel area size, our application can then identify the pixel to centimeter ratio & which will enable us to predict any other objects’ height & width. Once we have that, the application will divide that by the calculated width we observed for each coin from this distance. And, then the application will be able to predict the actual counts in real-time.

How can you identify the individual width?

My easy process would be to put ten quarter dollars stacked up & then you will get the height from the Computer vision. You have to divide that height by 10 to get the individual width of the coin until you build the model to predict the correct width depending upon the distance.


CODE:

Let us understand the code now –

  • clsConfig.py (Configuration file for the entire application.)


################################################
#### Written By: SATYAKI DE ####
#### Written On: 15-May-2020 ####
#### Modified On: 28-Dec-2021 ####
#### ####
#### Objective: This script is a config ####
#### file, contains all the keys for ####
#### Machine-Learning & streaming dashboard.####
#### ####
################################################
import os
import platform as pl
class clsConfig(object):
Curr_Path = os.path.dirname(os.path.realpath(__file__))
os_det = pl.system()
if os_det == "Windows":
sep = '\\'
else:
sep = '/'
conf = {
'APP_ID': 1,
'ARCH_DIR': Curr_Path + sep + 'arch' + sep,
'PROFILE_PATH': Curr_Path + sep + 'profile' + sep,
'LOG_PATH': Curr_Path + sep + 'log' + sep,
'REPORT_PATH': Curr_Path + sep + 'report',
'FILE_NAME': Curr_Path + sep + 'Image' + sep + 'Orig.jpeg',
'SRC_PATH': Curr_Path + sep + 'data' + sep,
'APP_DESC_1': 'Old Video Enhancement!',
'DEBUG_IND': 'N',
'INIT_PATH': Curr_Path,
'SUBDIR': 'data',
'SEP': sep,
'COIN_DEF_HEIGHT':0.22,
'PIC_TO_CM_MAP': 15.24,
'CONTOUR_AREA': 2000
}

view raw

clsConfig.py

hosted with ❤ by GitHub

'COIN_DEF_HEIGHT':0.22,
'PIC_TO_CM_MAP': 15.24,
'CONTOUR_AREA': 2000

The above entries are the important for us.

  1. PIC_TO_CM_MAP is the total length of the Aruco marker in centimeters involving all four sides.
  2. CONTOUR_AREA will change depending upon the minimum size you want to identify as part of the contour.
  3. COIN_DEF_HEIGHT needs to be revised as part of the previous steps explained.
  • clsAutoDetector.py (This python script will detect the contour.)


###############################################
#### Written By: SATYAKI DE ####
#### Written On: 17-Jan-2022 ####
#### Modified On 20-Mar-2022 ####
#### ####
#### Objective: This python script will ####
#### auto-detects the contours of an image ####
#### using grayscale conversion & then ####
#### share the contours details to the ####
#### calling class. ####
###############################################
import cv2
from clsConfig import clsConfig as cf
class clsAutoDetector():
def __init__(self):
self.cntArea = int(cf.conf['CONTOUR_AREA'])
def detectObjects(self, frame):
try:
cntArea = self.cntArea
# Convert Image to grayscale Image
grayImage = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# Create a Mask with adaptive threshold
maskImage = cv2.adaptiveThreshold(grayImage, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 19, 5)
cv2.imshow("Masked-Image", maskImage)
# Find contours
conts, Oth = cv2.findContours(maskImage, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
objectsConts = []
for cnt in conts:
area = cv2.contourArea(cnt)
if area > cntArea:
objectsConts.append(cnt)
return objectsConts
except Exception as e:
x = str(e)
print('Error: ', x)
objectsConts = []
return objectsConts

Key snippets from the above script are as follows –

# Find contours
conts, Oth = cv2.findContours(maskImage, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

objectsConts = []

for cnt in conts:
    area = cv2.contourArea(cnt)
    if area > cntArea:
        objectsConts.append(cnt)

Depending upon the supplied contour area, this script will identify & mark the contour of every frame captured through WebCam.

  • clsCountRealtime.py (This is the main class to calculate the number of stacked coins after reading using computer vision.)


##################################################
#### Written By: SATYAKI DE ####
#### Written On: 17-Jan-2022 ####
#### Modified On 20-Mar-2022 ####
#### ####
#### Objective: This python class will ####
#### learn the number of coins stacks on ####
#### top of another using computer vision ####
#### with the help from Open-CV after ####
#### manually recalibarting the initial ####
#### data (Individual Coin Heights needs to ####
#### adjust based on the distance of camera.) ####
##################################################
import cv2
from clsAutoDetector import *
import numpy as np
import os
import platform as pl
# Custom Class
from clsConfig import clsConfig as cf
import clsL as cl
# Initiating Log class
l = cl.clsL()
# Load Aruco detector
arucoParams = cv2.aruco.DetectorParameters_create()
arucoDict = cv2.aruco.Dictionary_get(cv2.aruco.DICT_5X5_50)
# Load Object Detector
detector = clsAutoDetector()
class clsCountRealtime:
def __init__(self):
self.sep = str(cf.conf['SEP'])
self.Curr_Path = str(cf.conf['INIT_PATH'])
self.coinDefH = float(cf.conf['COIN_DEF_HEIGHT'])
self.pics2cm = float(cf.conf['PIC_TO_CM_MAP'])
def learnStats(self, debugInd, var):
try:
# Per Coin Default Size from the known distance_to_camera
coinDefH = self.coinDefH
pics2cm = self.pics2cm
# Load Cap
cap = cv2.VideoCapture(0)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1280)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 720)
while True:
success, img = cap.read()
if success == False:
break
# Get Aruco marker
imgCorners, a, b = cv2.aruco.detectMarkers(img, arucoDict, parameters=arucoParams)
if imgCorners:
# Draw polygon around the marker
imgCornersInt = np.int0(imgCorners)
cv2.polylines(img, imgCornersInt, True, (0, 255, 0), 5)
# Aruco Perimeter
arucoPerimeter = cv2.arcLength(imgCornersInt[0], True)
# Pixel to cm ratio
pixelCMRatio = arucoPerimeter / pics2cm
contours = detector.detectObjects(img)
# Draw objects boundaries
for cnt in contours:
# Get rect
rect = cv2.boundingRect(cnt)
(x, y, w, h) = rect
print('*'*60)
print('Width Pixel: ')
print(str(w))
print('Height Pixel: ')
print(str(h))
# Get Width and Height of the Objects by applying the Ratio pixel to cm
objWidth = round(w / pixelCMRatio, 1)
objHeight = round(h / pixelCMRatio, 1)
cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)
cv2.putText(img, "Width {} cm".format(objWidth), (int(x – 100), int(y – 20)), cv2.FONT_HERSHEY_PLAIN, 2, (100, 200, 0), 2)
cv2.putText(img, "Height {} cm".format(objHeight), (int(x – 100), int(y + 15)), cv2.FONT_HERSHEY_PLAIN, 2, (100, 200, 0), 2)
NoOfCoins = round(objHeight / coinDefH)
cv2.putText(img, "No Of Coins: {}".format(NoOfCoins), (int(x – 100), int(y + 35)), cv2.FONT_HERSHEY_PLAIN, 2, (250, 0, 250), 2)
print('Final Height: ')
print(str(objHeight))
print('No Of Coins: ')
print(str(NoOfCoins))
cv2.imshow("Image", img)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
return 0
except Exception as e:
x = str(e)
print('Error: ', x)
return 1

Some of the key snippets from this script –

# Aruco Perimeter
arucoPerimeter = cv2.arcLength(imgCornersInt[0], True)

# Pixel to cm ratio
pixelCMRatio = arucoPerimeter / pics2cm

The above lines will extract the critical auroco perimeter & then the ratio between pixel against centimeters.

contours = detector.detectObjects(img)

The application detects the contours of each frame from the previous class, which will be used here.

# Draw objects boundaries
for cnt in contours:
    # Get rect
    rect = cv2.boundingRect(cnt)
    (x, y, w, h) = rect

In this step, the application will draw the object contours & also capture the center points, along with the height & width of the identified objects.

# Get Width and Height of the Objects by applying the Ratio pixel to cm
objWidth = round(w / pixelCMRatio, 1)
objHeight = round(h / pixelCMRatio, 1)

Finally, identify the width & height of the contoured object in centimeters.

cv2.putText(img, "Width {} cm".format(objWidth), (int(x - 100), int(y - 20)), cv2.FONT_HERSHEY_PLAIN, 2, (100, 200, 0), 2)
cv2.putText(img, "Height {} cm".format(objHeight), (int(x - 100), int(y + 15)), cv2.FONT_HERSHEY_PLAIN, 2, (100, 200, 0), 2)

NoOfCoins = round(objHeight / coinDefH)

cv2.putText(img, "No Of Coins: {}".format(NoOfCoins), (int(x - 100), int(y + 35)), cv2.FONT_HERSHEY_PLAIN, 2, (250, 0, 250), 2)

It displays both the height, width & total number of coins on top of the live video.

if cv2.waitKey(1) & 0xFF == ord('q'):
    break

The above line will help the developer exit from the visual application by pressing the escape or ‘q’ key in Macbook.

  • visualDataRead.py (Main calling function.)


###############################################
#### Written By: SATYAKI DE ####
#### Written On: 17-Jan-2022 ####
#### Modified On 20-Mar-2022 ####
#### ####
#### Objective: This is the main calling ####
#### python script that will invoke the ####
#### clsCountRealtime class to initiate ####
#### the model to read the real-time ####
#### stckaed-up coins & share the actual ####
#### numbers on top of the video feed. ####
###############################################
# We keep the setup code in a different class as shown below.
import clsCountRealtime as ar
from clsConfig import clsConfig as cf
import datetime
import logging
###############################################
### Global Section ###
###############################################
# Instantiating all the three classes
x1 = ar.clsCountRealtime()
###############################################
### End of Global Section ###
###############################################
def main():
try:
# Other useful variables
debugInd = 'Y'
var = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
var1 = datetime.datetime.now()
print('Start Time: ', str(var))
# End of useful variables
# Initiating Log Class
general_log_path = str(cf.conf['LOG_PATH'])
# Enabling Logging Info
logging.basicConfig(filename=general_log_path + 'restoreVideo.log', level=logging.INFO)
print('Started Capturing Real-Time Coin Counts!')
# Execute all the pass
r1 = x1.learnStats(debugInd, var)
if (r1 == 0):
print('Successfully counts number of stcaked coins!')
else:
print('Failed to counts number of stcaked coins!')
var2 = datetime.datetime.now()
c = var2 var1
minutes = c.total_seconds() / 60
print('Total difference in minutes: ', str(minutes))
print('End Time: ', str(var1))
except Exception as e:
x = str(e)
print('Error: ', x)
if __name__ == "__main__":
main()

And, the key snippet from the above script –

x1 = ar.clsCountRealtime()

The application instantiates the main class.

# Execute all the pass
r1 = x1.learnStats(debugInd, var)

if (r1 == 0):
    print('Successfully counts number of stcaked coins!')
else:
    print('Failed to counts number of stcaked coins!')

The above code invokes the learnStats function to calculate the count of stacked coins.


FOLDER STRUCTURE:

Folder Details

So, we’ve done it.

You will get the complete codebase in the following Github link.

I’ll bring some more exciting topic in the coming days from the Python verse. Please share & subscribe my post & let me know your feedback.

Till then, Happy Avenging! 😀

Note: All the data & scenario posted here are representational data & scenarios & available over the internet & for educational purpose only. Some of the images (except my photo) that we’ve used are available over the net. We don’t claim the ownership of these images. There is an always room for improvement & especially the prediction quality.

Python-based dash framework visualizing real-time covid-19 trend.

Hi Team,

We’ll enhance our last post on Covid-19 prediction & try to capture them in a real-time dashboard, where the values in the visual display points will be affected as soon as the source data changes. In short, this is genuinely a real-time visual dashboard displaying all the graphs, trends depending upon the third-party API source data change.

However, I would like to share the run before we dig deep into this.

Demo Run

Architecture:

Let us understand the architecture for this solution –

Streaming Architecture

From the above diagram, one can see that we’re maintaining a similar approach compared to our last initiative. However, we’ve used a different framework to display the data live.

To achieve this, we’ve used a compelling python-based framework called Dash. Other than that, we’ve used Ably, Plotly & Prophet API.

If you need to know more about our last post, please visit this link.


Package Installation:

Let us understand the sample packages that require for this task.

Step – 1:

Installing Packages

Step – 2:

Installing Packages – Continue

Step – 3:

Installing Packages – Continue

Step – 4:

Installing Packages – Final

And, here is the command to install those packages –

pip install pandas
pip install plotly
pip install prophet
pip install dash
pip install pandas
pip install ably

Code:

Since this is an extension to our previous post, we’re not going to discuss other scripts, which we’ve already discussed over there. Instead, we will talk about the enhanced scripts & the new scripts that require for this use case.

1. clsConfig.py ( This native Python script contains the configuration entries. )


################################################
#### Written By: SATYAKI DE ####
#### Written On: 15-May-2020 ####
#### Modified On: 09-Sep-2021 ####
#### ####
#### Objective: This script is a config ####
#### file, contains all the keys for ####
#### Machine-Learning & streaming dashboard.####
#### ####
################################################
import os
import platform as pl
class clsConfig(object):
Curr_Path = os.path.dirname(os.path.realpath(__file__))
os_det = pl.system()
if os_det == "Windows":
sep = '\\'
else:
sep = '/'
conf = {
'APP_ID': 1,
'ARCH_DIR': Curr_Path + sep + 'arch' + sep,
'PROFILE_PATH': Curr_Path + sep + 'profile' + sep,
'LOG_PATH': Curr_Path + sep + 'log' + sep,
'REPORT_PATH': Curr_Path + sep + 'report',
'FILE_NAME': Curr_Path + sep + 'data' + sep + 'TradeIn.csv',
'SRC_PATH': Curr_Path + sep + 'data' + sep,
'APP_DESC_1': 'Dash Integration with Ably!',
'DEBUG_IND': 'N',
'INIT_PATH': Curr_Path,
'SUBDIR' : 'data',
'ABLY_ID': 'XXX2LL.93kdkiU2:Kdsldoeie737484E',
"URL":"https://corona-api.com/countries/",
"appType":"application/json",
"conType":"keep-alive",
"limRec": 10,
"CACHE":"no-cache",
"MAX_RETRY": 3,
"coList": "DE, IN, US, CA, GB, ID, BR",
"FNC": "NewConfirmed",
"TMS": "ReportedDate",
"FND": "NewDeaths",
"FinData": "Cache.csv"
}

view raw

clsConfig.py

hosted with ❤ by GitHub

A few of the new entries, which are essential to this task are -> ABLY_ID & FinData.

2. clsPublishStream.py ( This script will publish the data transformed for Covid-19 predictions from the third-party sources. )


###############################################################
#### ####
#### Written By: Satyaki De ####
#### Written Date: 26-Jul-2021 ####
#### Modified Date: 08-Sep-2021 ####
#### ####
#### Objective: This script will publish real-time ####
#### streaming data coming out from a hosted API ####
#### sources using another popular third-party service ####
#### named Ably. Ably mimics pubsub Streaming concept, ####
#### which might be extremely useful for any start-ups. ####
#### ####
###############################################################
from ably import AblyRest
import logging
import json
from random import seed
from random import random
import json
import math
import random
from clsConfig import clsConfig as cf
# Global Section
logger = logging.getLogger('ably')
logger.addHandler(logging.StreamHandler())
ably_id = str(cf.conf['ABLY_ID'])
ably = AblyRest(ably_id)
channel = ably.channels.get('sd_channel')
# End Of Global Section
class clsPublishStream:
def __init__(self):
self.fnc = cf.conf['FNC']
def pushEvents(self, srcDF, debugInd, varVa, flg):
try:
# JSON data
# This is the default data for all the identified category
# we've prepared. You can extract this dynamically. Or, By
# default you can set their base trade details.
json_data = [{'Year_Mon': '201911', 'Brazil': 0.0, 'Canada': 0.0, 'Germany': 0.0, 'India': 0.0, 'Indonesia': 0.0, 'UnitedKingdom': 0.0, 'UnitedStates': 0.0, 'Status': flg},
{'Year_Mon': '201912', 'Brazil': 0.0, 'Canada': 0.0, 'Germany': 0.0, 'India': 0.0, 'Indonesia': 0.0, 'UnitedKingdom': 0.0, 'UnitedStates': 0.0, 'Status': flg}]
jdata = json.dumps(json_data)
# Publish a message to the sd_channel channel
channel.publish('event', jdata)
# Capturing the inbound dataframe
iDF = srcDF
# Adding new selected points
covid_dict = iDF.to_dict('records')
jdata_fin = json.dumps(covid_dict)
# Publish rest of the messages to the sd_channel channel
channel.publish('event', jdata_fin)
jdata_fin = ''
return 0
except Exception as e:
x = str(e)
print(x)
logging.info(x)
return 1

We’ve already discussed this script. The only new line that appears here is –

json_data = [{'Year_Mon': '201911', 'Brazil': 0.0, 'Canada': 0.0, 'Germany': 0.0, 'India': 0.0, 'Indonesia': 0.0, 'UnitedKingdom': 0.0, 'UnitedStates': 0.0, 'Status': flg},
            {'Year_Mon': '201912', 'Brazil': 0.0, 'Canada': 0.0, 'Germany': 0.0, 'India': 0.0, 'Indonesia': 0.0, 'UnitedKingdom': 0.0, 'UnitedStates': 0.0, 'Status': flg}]

This statement is more like a dummy feed, which creates the basic structure of your graph.

3. clsStreamConsume.py ( This script will consume the stream from Ably Queue configuration entries. )


##############################################
#### Written By: SATYAKI DE ####
#### Written On: 26-Jul-2021 ####
#### Modified On 08-Sep-2021 ####
#### ####
#### Objective: Consuming Streaming data ####
#### from Ably channels published by the ####
#### callPredictCovidAnalysisRealtime.py ####
#### ####
##############################################
import json
from clsConfig import clsConfig as cf
import requests
import logging
import time
import pandas as p
import clsL as cl
from ably import AblyRest
# Initiating Log class
l = cl.clsL()
class clsStreamConsume:
def __init__(self):
self.ably_id = str(cf.conf['ABLY_ID'])
self.fileName = str(cf.conf['FinData'])
def conStream(self, varVa, debugInd):
try:
ably_id = self.ably_id
fileName = self.fileName
var = varVa
debug_ind = debugInd
# Fetching the data
client = AblyRest(ably_id)
channel = client.channels.get('sd_channel')
message_page = channel.history()
# Counter Value
cnt = 0
# Declaring Global Data-Frame
df_conv = p.DataFrame()
for i in message_page.items:
print('Last Msg: {}'.format(i.data))
json_data = json.loads(i.data)
# Converting JSON to Dataframe
df = p.json_normalize(json_data)
df.columns = df.columns.map(lambda x: x.split(".")[1])
if cnt == 0:
df_conv = df
else:
d_frames = [df_conv, df]
df_conv = p.concat(d_frames)
cnt += 1
# Resetting the Index Value
df_conv.reset_index(drop=True, inplace=True)
# This will check whether the current load is happening
# or not. Based on that, it will capture the old events
# from cache.
if df_conv.empty:
df_conv = p.read_csv(fileName, index = True)
else:
l.logr(fileName, debug_ind, df_conv, 'log')
return df_conv
except Exception as e:
x = str(e)
print(x)
logging.info(x)
# This will handle the error scenaio as well.
# Based on that, it will capture the old events
# from cache.
try:
df_conv = p.read_csv(fileName, index = True)
except:
df = p.DataFrame()
return df

We’ve already discussed this script in one of my earlier posts, which you will get here.

So, I’m not going to discuss all the steps in detail.

The only added part was to introduce some temporary local caching mechanism.

if df_conv.empty:
    df_conv = p.read_csv(fileName, index = True)
else:
    l.logr(fileName, debug_ind, df_conv, 'log')

4. callPredictCovidAnalysisRealtime.py ( Main calling script to fetch the COVID-19 data from the third-party source & then publish it to the Ably message queue after transforming the data & adding the prediction using Facebook’s prophet API. )


##############################################
#### Written By: SATYAKI DE ####
#### Written On: 26-Jul-2021 ####
#### Modified On 26-Jul-2021 ####
#### ####
#### Objective: Calling multiple API's ####
#### that including Prophet-API developed ####
#### by Facebook for future prediction of ####
#### Covid-19 situations in upcoming days ####
#### for world's major hotspots. ####
##############################################
import json
import clsCovidAPI as ca
from clsConfig import clsConfig as cf
import datetime
import logging
import clsL as cl
import math as m
import clsPublishStream as cps
import clsForecast as f
from prophet import Prophet
from prophet.plot import plot_plotly, plot_components_plotly
import matplotlib.pyplot as plt
import pandas as p
import datetime as dt
import time
# Disbling Warning
def warn(*args, **kwargs):
pass
import warnings
warnings.warn = warn
# Initiating Log class
l = cl.clsL()
# Helper Function that removes underscores
def countryDet(inputCD):
try:
countryCD = inputCD
if str(countryCD) == 'DE':
cntCD = 'Germany'
elif str(countryCD) == 'BR':
cntCD = 'Brazil'
elif str(countryCD) == 'GB':
cntCD = 'UnitedKingdom'
elif str(countryCD) == 'US':
cntCD = 'UnitedStates'
elif str(countryCD) == 'IN':
cntCD = 'India'
elif str(countryCD) == 'CA':
cntCD = 'Canada'
elif str(countryCD) == 'ID':
cntCD = 'Indonesia'
else:
cntCD = 'N/A'
return cntCD
except:
cntCD = 'N/A'
return cntCD
def lookupCountry(row):
try:
strCD = str(row['CountryCode'])
retVal = countryDet(strCD)
return retVal
except:
retVal = 'N/A'
return retVal
def adjustTrend(row):
try:
flTrend = float(row['trend'])
flTrendUpr = float(row['trend_upper'])
flTrendLwr = float(row['trend_lower'])
retVal = m.trunc((flTrend + flTrendUpr + flTrendLwr)/3)
if retVal < 0:
retVal = 0
return retVal
except:
retVal = 0
return retVal
def ceilTrend(row, colName):
try:
flTrend = str(row[colName])
if flTrend.find('.'):
if float(flTrend) > 0:
retVal = m.trunc(float(flTrend)) + 1
else:
retVal = m.trunc(float(flTrend))
else:
retVal = float(flTrend)
if retVal < 0:
retVal = 0
return retVal
except:
retVal = 0
return retVal
def plot_picture(inputDF, debug_ind, var, countryCD, stat):
try:
iDF = inputDF
# Lowercase the column names
iDF.columns = [c.lower() for c in iDF.columns]
# Determine which is Y axis
y_col = [c for c in iDF.columns if c.startswith('y')][0]
# Determine which is X axis
x_col = [c for c in iDF.columns if c.startswith('ds')][0]
# Data Conversion
iDF['y'] = iDF[y_col].astype('float')
iDF['ds'] = iDF[x_col].astype('datetime64[ns]')
# Forecast calculations
# Decreasing the changepoint_prior_scale to 0.001 to make the trend less flexible
m = Prophet(n_changepoints=20, yearly_seasonality=True, changepoint_prior_scale=0.001)
#m = Prophet(n_changepoints=20, yearly_seasonality=True, changepoint_prior_scale=0.04525)
#m = Prophet(n_changepoints=['2021-09-10'])
m.fit(iDF)
forecastDF = m.make_future_dataframe(periods=365)
forecastDF = m.predict(forecastDF)
l.logr('15.forecastDF_' + var + '_' + countryCD + '.csv', debug_ind, forecastDF, 'log')
df_M = forecastDF[['ds', 'trend', 'trend_lower', 'trend_upper']]
l.logr('16.df_M_' + var + '_' + countryCD + '.csv', debug_ind, df_M, 'log')
# Getting Full Country Name
cntCD = countryDet(countryCD)
# Draw forecast results
df_M['Country'] = cntCD
l.logr('17.df_M_C_' + var + '_' + countryCD + '.csv', debug_ind, df_M, 'log')
df_M['AdjustTrend'] = df_M.apply(lambda row: adjustTrend(row), axis=1)
l.logr('20.df_M_AdjustTrend_' + var + '_' + countryCD + '.csv', debug_ind, df_M, 'log')
return df_M
except Exception as e:
x = str(e)
print(x)
df = p.DataFrame()
return df
def countrySpecificDF(counryDF, val):
try:
countryName = val
df = counryDF
df_lkpFile = df[(df['CountryCode'] == val)]
return df_lkpFile
except:
df = p.DataFrame()
return df
def toNum(row, colName):
try:
flTrend = str(row[colName])
flTr, subpart = flTrend.split(' ')
retVal = int(flTr.replace('-',''))
return retVal
except:
retVal = 0
return retVal
def extractPredictedDF(OrigDF, MergePredictedDF, colName):
try:
iDF_1 = OrigDF
iDF_2 = MergePredictedDF
dt_format = '%Y-%m-%d'
iDF_1_max_group = iDF_1.groupby(["Country"] , as_index=False)["ReportedDate"].max()
iDF_2['ReportedDate'] = iDF_2.apply(lambda row: toNum(row, 'ds'), axis=1)
col_one_list = iDF_1_max_group['Country'].tolist()
col_two_list = iDF_1_max_group['ReportedDate'].tolist()
print('col_one_list: ', str(col_one_list))
print('col_two_list: ', str(col_two_list))
cnt_1_x = 1
cnt_1_y = 1
cnt_x = 0
df_M = p.DataFrame()
for i in col_one_list:
str_countryVal = str(i)
cnt_1_y = 1
for j in col_two_list:
intReportDate = int(str(j).strip().replace('-',''))
if cnt_1_x == cnt_1_y:
print('str_countryVal: ', str(str_countryVal))
print('intReportDate: ', str(intReportDate))
iDF_2_M = iDF_2[(iDF_2['Country'] == str_countryVal) & (iDF_2['ReportedDate'] > intReportDate)]
# Merging with the previous Country Code data
if cnt_x == 0:
df_M = iDF_2_M
else:
d_frames = [df_M, iDF_2_M]
df_M = p.concat(d_frames)
cnt_x += 1
cnt_1_y += 1
cnt_1_x += 1
df_M.drop(columns=['ReportedDate'], axis=1, inplace=True)
df_M.rename(columns={'ds':'ReportedDate'}, inplace=True)
df_M.rename(columns={'AdjustTrend':colName}, inplace=True)
return df_M
except:
df = p.DataFrame()
return df
def toPivot(inDF, colName):
try:
iDF = inDF
iDF_Piv = iDF.pivot_table(colName, ['ReportedDate'], 'Country')
iDF_Piv.reset_index( drop=False, inplace=True )
list1 = ['ReportedDate']
iDF_Arr = iDF['Country'].unique()
list2 = iDF_Arr.tolist()
listV = list1 + list2
iDF_Piv.reindex([listV], axis=1)
return iDF_Piv
except Exception as e:
x = str(e)
print(x)
df = p.DataFrame()
return df
def toAgg(inDF, var, debugInd, flg):
try:
iDF = inDF
colName = "ReportedDate"
list1 = list(iDF.columns.values)
list1.remove(colName)
list1 = ["Brazil", "Canada", "Germany", "India", "Indonesia", "UnitedKingdom", "UnitedStates"]
iDF['Year_Mon'] = iDF[colName].apply(lambda x:x.strftime('%Y%m'))
iDF.drop(columns=[colName], axis=1, inplace=True)
ColNameGrp = "Year_Mon"
print('List1 Aggregate:: ', str(list1))
print('ColNameGrp :: ', str(ColNameGrp))
iDF_T = iDF[["Year_Mon", "Brazil", "Canada", "Germany", "India", "Indonesia", "UnitedKingdom", "UnitedStates"]]
iDF_T.fillna(0, inplace = True)
print('iDF_T:: ')
print(iDF_T)
iDF_1_max_group = iDF_T.groupby(ColNameGrp, as_index=False)[list1].sum()
iDF_1_max_group['Status'] = flg
return iDF_1_max_group
except Exception as e:
x = str(e)
print(x)
df = p.DataFrame()
return df
def publishEvents(inDF1, inDF2, inDF3, inDF4, var, debugInd):
try:
# Original Covid Data from API
iDF1 = inDF1
iDF2 = inDF2
NC = 'NewConfirmed'
ND = 'NewDeaths'
iDF1_PV = toPivot(iDF1, NC)
iDF1_PV['ReportedDate'] = p.to_datetime(iDF1_PV['ReportedDate'])
l.logr('57.iDF1_PV_' + var + '.csv', debugInd, iDF1_PV, 'log')
iDF2_PV = toPivot(iDF2, ND)
iDF2_PV['ReportedDate'] = p.to_datetime(iDF2_PV['ReportedDate'])
l.logr('58.iDF2_PV_' + var + '.csv', debugInd, iDF2_PV, 'log')
# Predicted Covid Data from Facebook API
iDF3 = inDF3
iDF4 = inDF4
iDF3_PV = toPivot(iDF3, NC)
l.logr('59.iDF3_PV_' + var + '.csv', debugInd, iDF3_PV, 'log')
iDF4_PV = toPivot(iDF4, ND)
l.logr('60.iDF4_PV_' + var + '.csv', debugInd, iDF4_PV, 'log')
# Now aggregating data based on year-month only
iDF1_Agg = toAgg(iDF1_PV, var, debugInd, NC)
l.logr('61.iDF1_Agg_' + var + '.csv', debugInd, iDF1_Agg, 'log')
iDF2_Agg = toAgg(iDF2_PV, var, debugInd, ND)
l.logr('62.iDF2_Agg_' + var + '.csv', debugInd, iDF2_Agg, 'log')
iDF3_Agg = toAgg(iDF3_PV, var, debugInd, NC)
l.logr('63.iDF3_Agg_' + var + '.csv', debugInd, iDF3_Agg, 'log')
iDF4_Agg = toAgg(iDF4_PV, var, debugInd, ND)
l.logr('64.iDF4_Agg_' + var + '.csv', debugInd, iDF4_Agg, 'log')
# Initiating Ably class to push events
x1 = cps.clsPublishStream()
# Pushing both the Historical Confirmed Cases
retVal_1 = x1.pushEvents(iDF1_Agg, debugInd, var, NC)
if retVal_1 == 0:
print('Successfully historical event pushed!')
else:
print('Failed to push historical events!')
# Pushing both the Historical Death Cases
retVal_3 = x1.pushEvents(iDF2_Agg, debugInd, var, ND)
if retVal_3 == 0:
print('Successfully historical event pushed!')
else:
print('Failed to push historical events!')
time.sleep(5)
# Pushing both the New Confirmed Cases
retVal_2 = x1.pushEvents(iDF3_Agg, debugInd, var, NC)
if retVal_2 == 0:
print('Successfully predicted event pushed!')
else:
print('Failed to push predicted events!')
# Pushing both the New Death Cases
retVal_4 = x1.pushEvents(iDF4_Agg, debugInd, var, ND)
if retVal_4 == 0:
print('Successfully predicted event pushed!')
else:
print('Failed to push predicted events!')
return 0
except Exception as e:
x = str(e)
print(x)
return 1
def main():
try:
var1 = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
print('*' *60)
DInd = 'Y'
NC = 'New Confirmed'
ND = 'New Dead'
SM = 'data process Successful!'
FM = 'data process Failure!'
print("Calling the custom Package for large file splitting..")
print('Start Time: ' + str(var1))
countryList = str(cf.conf['coList']).split(',')
# Initiating Log Class
general_log_path = str(cf.conf['LOG_PATH'])
# Enabling Logging Info
logging.basicConfig(filename=general_log_path + 'CovidAPI.log', level=logging.INFO)
# Create the instance of the Covid API Class
x1 = ca.clsCovidAPI()
# Let's pass this to our map section
retDF = x1.searchQry(var1, DInd)
retVal = int(retDF.shape[0])
if retVal > 0:
print('Successfully Covid Data Extracted from the API-source.')
else:
print('Something wrong with your API-source!')
# Extracting Skeleton Data
df = retDF[['data.code', 'date', 'deaths', 'confirmed', 'recovered', 'new_confirmed', 'new_recovered', 'new_deaths', 'active']]
df.columns = ['CountryCode', 'ReportedDate', 'TotalReportedDead', 'TotalConfirmedCase', 'TotalRecovered', 'NewConfirmed', 'NewRecovered', 'NewDeaths', 'ActiveCaases']
df.dropna()
print('Returned Skeleton Data Frame: ')
print(df)
l.logr('5.df_' + var1 + '.csv', DInd, df, 'log')
# Due to source data issue, application will perform of
# avg of counts based on dates due to multiple entries
g_df = df.groupby(["CountryCode", "ReportedDate"] , as_index=False)["TotalReportedDead","TotalConfirmedCase","TotalRecovered","NewConfirmed","NewRecovered","NewDeaths","ActiveCaases"].mean()
g_df['TotalReportedDead_M'] = g_df.apply(lambda row: ceilTrend(row, 'TotalReportedDead'), axis=1)
g_df['TotalConfirmedCase_M'] = g_df.apply(lambda row: ceilTrend(row, 'TotalConfirmedCase'), axis=1)
g_df['TotalRecovered_M'] = g_df.apply(lambda row: ceilTrend(row, 'TotalRecovered'), axis=1)
g_df['NewConfirmed_M'] = g_df.apply(lambda row: ceilTrend(row, 'NewConfirmed'), axis=1)
g_df['NewRecovered_M'] = g_df.apply(lambda row: ceilTrend(row, 'NewRecovered'), axis=1)
g_df['NewDeaths_M'] = g_df.apply(lambda row: ceilTrend(row, 'NewDeaths'), axis=1)
g_df['ActiveCaases_M'] = g_df.apply(lambda row: ceilTrend(row, 'ActiveCaases'), axis=1)
# Dropping old columns
g_df.drop(columns=['TotalReportedDead', 'TotalConfirmedCase', 'TotalRecovered', 'NewConfirmed', 'NewRecovered', 'NewDeaths', 'ActiveCaases'], axis=1, inplace=True)
# Renaming the new columns to old columns
g_df.rename(columns={'TotalReportedDead_M':'TotalReportedDead'}, inplace=True)
g_df.rename(columns={'TotalConfirmedCase_M':'TotalConfirmedCase'}, inplace=True)
g_df.rename(columns={'TotalRecovered_M':'TotalRecovered'}, inplace=True)
g_df.rename(columns={'NewConfirmed_M':'NewConfirmed'}, inplace=True)
g_df.rename(columns={'NewRecovered_M':'NewRecovered'}, inplace=True)
g_df.rename(columns={'NewDeaths_M':'NewDeaths'}, inplace=True)
g_df.rename(columns={'ActiveCaases_M':'ActiveCaases'}, inplace=True)
l.logr('5.g_df_' + var1 + '.csv', DInd, g_df, 'log')
# Working with forecast
# Create the instance of the Forecast API Class
x2 = f.clsForecast()
# Fetching each country name & then get the details
cnt = 6
cnt_x = 0
cnt_y = 0
df_M_Confirmed = p.DataFrame()
df_M_Deaths = p.DataFrame()
for i in countryList:
try:
cntryIndiv = i.strip()
cntryFullName = countryDet(cntryIndiv)
print('Country Porcessing: ' + str(cntryFullName))
# Creating dataframe for each country
# Germany Main DataFrame
dfCountry = countrySpecificDF(g_df, cntryIndiv)
l.logr(str(cnt) + '.df_' + cntryIndiv + '_' + var1 + '.csv', DInd, dfCountry, 'log')
# Let's pass this to our map section
retDFGenNC = x2.forecastNewConfirmed(dfCountry, DInd, var1)
statVal = str(NC)
a1 = plot_picture(retDFGenNC, DInd, var1, cntryIndiv, statVal)
# Merging with the previous Country Code data
if cnt_x == 0:
df_M_Confirmed = a1
else:
d_frames = [df_M_Confirmed, a1]
df_M_Confirmed = p.concat(d_frames)
cnt_x += 1
retDFGenNC_D = x2.forecastNewDead(dfCountry, DInd, var1)
statVal = str(ND)
a2 = plot_picture(retDFGenNC_D, DInd, var1, cntryIndiv, statVal)
# Merging with the previous Country Code data
if cnt_y == 0:
df_M_Deaths = a2
else:
d_frames = [df_M_Deaths, a2]
df_M_Deaths = p.concat(d_frames)
cnt_y += 1
# Printing Proper message
if (a1 + a2) == 0:
oprMsg = cntryFullName + ' ' + SM
print(oprMsg)
else:
oprMsg = cntryFullName + ' ' + FM
print(oprMsg)
# Resetting the dataframe value for the next iteration
dfCountry = p.DataFrame()
cntryIndiv = ''
oprMsg = ''
cntryFullName = ''
a1 = 0
a2 = 0
statVal = ''
cnt += 1
except Exception as e:
x = str(e)
print(x)
l.logr('49.df_M_Confirmed_' + var1 + '.csv', DInd, df_M_Confirmed, 'log')
l.logr('50.df_M_Deaths_' + var1 + '.csv', DInd, df_M_Deaths, 'log')
# Removing unwanted columns
df_M_Confirmed.drop(columns=['trend', 'trend_lower', 'trend_upper'], axis=1, inplace=True)
df_M_Deaths.drop(columns=['trend', 'trend_lower', 'trend_upper'], axis=1, inplace=True)
l.logr('51.df_M_Confirmed_' + var1 + '.csv', DInd, df_M_Confirmed, 'log')
l.logr('52.df_M_Deaths_' + var1 + '.csv', DInd, df_M_Deaths, 'log')
# Creating original dataframe from the source API
df_M_Confirmed_Orig = g_df[['CountryCode', 'ReportedDate','NewConfirmed']]
df_M_Deaths_Orig = g_df[['CountryCode', 'ReportedDate','NewDeaths']]
# Transforming Country Code
df_M_Confirmed_Orig['Country'] = df_M_Confirmed_Orig.apply(lambda row: lookupCountry(row), axis=1)
df_M_Deaths_Orig['Country'] = df_M_Deaths_Orig.apply(lambda row: lookupCountry(row), axis=1)
# Dropping unwanted column
df_M_Confirmed_Orig.drop(columns=['CountryCode'], axis=1, inplace=True)
df_M_Deaths_Orig.drop(columns=['CountryCode'], axis=1, inplace=True)
# Reordering columns
df_M_Confirmed_Orig = df_M_Confirmed_Orig.reindex(['ReportedDate','Country','NewConfirmed'], axis=1)
df_M_Deaths_Orig = df_M_Deaths_Orig.reindex(['ReportedDate','Country','NewDeaths'], axis=1)
l.logr('53.df_M_Confirmed_Orig_' + var1 + '.csv', DInd, df_M_Confirmed_Orig, 'log')
l.logr('54.df_M_Deaths_Orig_' + var1 + '.csv', DInd, df_M_Deaths_Orig, 'log')
# Filter out only the predicted data
filterDF_1 = extractPredictedDF(df_M_Confirmed_Orig, df_M_Confirmed, 'NewConfirmed')
l.logr('55.filterDF_1_' + var1 + '.csv', DInd, filterDF_1, 'log')
filterDF_2 = extractPredictedDF(df_M_Confirmed_Orig, df_M_Confirmed, 'NewDeaths')
l.logr('56.filterDF_2_' + var1 + '.csv', DInd, filterDF_2, 'log')
# Calling the final publish events
retVa = publishEvents(df_M_Confirmed_Orig, df_M_Deaths_Orig, filterDF_1, filterDF_2, var1, DInd)
if retVa == 0:
print('Successfully stream processed!')
else:
print('Failed to process stream!')
var2 = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
print('End Time: ' + str(var2))
print('*' *60)
except Exception as e:
x = str(e)
print(x)
if __name__ == "__main__":
main()

Let us understand the enhancement part of this script –

We’ve taken out the plotly part as we will use a separate dashboard script to visualize the data trend.

However, we need to understand the initial consumed data from API & how we transform the data, which will be helpful for visualization.

The initial captured data should look like this after extracting only the relevant elements from the API response.

Initial Data from API

As you can see that based on the country & reported date, our application is consuming attributes like Total-Reported-Death, Total-Recovered, New-death, New-Confirmed & so on.

From this list, we’ve taken two attributes for our use cases & they are New-Death & New-Confirmed. Also, we’re predicting the Future-New-Death & Future-New-Confirmed based on the historical data using Facebook’s prophet API.

And, we would be transposing them & extract the countries & put them as columns for better representations.

Transposed Data

Hence, here is the code that we should be exploring –

def toPivot(inDF, colName):
    try:
        iDF = inDF

        iDF_Piv = iDF.pivot_table(colName, ['ReportedDate'], 'Country')
        iDF_Piv.reset_index( drop=False, inplace=True )

        list1 = ['ReportedDate']

        iDF_Arr = iDF['Country'].unique()
        list2 = iDF_Arr.tolist()

        listV = list1 + list2

        iDF_Piv.reindex([listV], axis=1)

        return iDF_Piv
    except Exception as e:
        x = str(e)
        print(x)

        df = p.DataFrame()

        return df

Now, using the pivot_table function, we’re transposing the row values into the columns. And, later we’ve realigned the column heading as per our desired format.

However, we still have the data as per individual daily dates in this case. We want to eliminate that by removing the daypart & then aggregate them by month as shown below –

Aggregated Data

And, here is the code for that –

def toAgg(inDF, var, debugInd, flg):
    try:
        iDF = inDF
        colName = "ReportedDate"

        list1 = list(iDF.columns.values)
        list1.remove(colName)

        list1 = ["Brazil", "Canada", "Germany", "India", "Indonesia", "UnitedKingdom", "UnitedStates"]

        iDF['Year_Mon'] = iDF[colName].apply(lambda x:x.strftime('%Y%m'))
        iDF.drop(columns=[colName], axis=1, inplace=True)

        ColNameGrp = "Year_Mon"
        print('List1 Aggregate:: ', str(list1))
        print('ColNameGrp :: ', str(ColNameGrp))

        iDF_T = iDF[["Year_Mon", "Brazil", "Canada", "Germany", "India", "Indonesia", "UnitedKingdom", "UnitedStates"]]
        iDF_T.fillna(0, inplace = True)
        print('iDF_T:: ')
        print(iDF_T)

        iDF_1_max_group = iDF_T.groupby(ColNameGrp, as_index=False)[list1].sum()
        iDF_1_max_group['Status'] = flg

        return iDF_1_max_group
    except Exception as e:
        x = str(e)
        print(x)

        df = p.DataFrame()

        return df

From the above snippet we can conclude that the application is taking out the daypart & then aggregate it based on the Year_Mon attribute.

The following snippet will push the final transformed data to Ably queue –

x1 = cps.clsPublishStream()

# Pushing both the Historical Confirmed Cases
retVal_1 = x1.pushEvents(iDF1_Agg, debugInd, var, NC)

if retVal_1 == 0:
    print('Successfully historical event pushed!')
else:
    print('Failed to push historical events!')

5. dashboard_realtime.py ( Main calling script to consume the data from Ably queue & then visualize the trend. )


##############################################
#### Written By: SATYAKI DE ####
#### Written On: 08-Sep-2021 ####
#### Modified On 08-Sep-2021 ####
#### ####
#### Objective: This is the main script ####
#### to invoke dashboard after consuming ####
#### streaming real-time predicted data ####
#### using Facebook API & Ably message Q. ####
#### ####
#### This script will show the trend ####
#### comparison between major democracies ####
#### of the world. ####
#### ####
##############################################
import datetime
import dash
from dash import dcc
from dash import html
import plotly
from dash.dependencies import Input, Output
from ably import AblyRest
from clsConfig import clsConfig as cf
import pandas as p
# Main Class to consume streaming
import clsStreamConsume as ca
import numpy as np
# Create the instance of the Covid API Class
x1 = ca.clsStreamConsume()
external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css&#39;]
app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
app.layout = html.Div(
html.Div([
html.H1("Covid-19 Trend Dashboard",
className='text-center text-primary mb-4'),
html.H5(children='''
Dash: Covid-19 Trend – (Present Vs Future)
'''),
html.P("Covid-19: New Confirmed Cases:",
style={"textDecoration": "underline"}),
dcc.Graph(id='live-update-graph-1'),
html.P("Covid-19: New Death Cases:",
style={"textDecoration": "underline"}),
dcc.Graph(id='live-update-graph-2'),
dcc.Interval(
id='interval-component',
interval=5*1000, # in milliseconds
n_intervals=0
)
], className="row", style={'marginBottom': 10, 'marginTop': 10})
)
def to_OptimizeString(row):
try:
x_str = str(row['Year_Mon'])
dt_format = '%Y%m%d'
finStr = x_str + '01'
strReportDate = datetime.datetime.strptime(finStr, dt_format)
return strReportDate
except Exception as e:
x = str(e)
print(x)
dt_format = '%Y%m%d'
var = '20990101'
strReportDate = datetime.strptime(var, dt_format)
return strReportDate
def fetchEvent(var1, DInd):
try:
# Let's pass this to our map section
iDF_M = x1.conStream(var1, DInd)
# Converting Year_Mon to dates
iDF_M['Year_Mon_Mod']= iDF_M.apply(lambda row: to_OptimizeString(row), axis=1)
# Dropping old columns
iDF_M.drop(columns=['Year_Mon'], axis=1, inplace=True)
#Renaming new column to old column
iDF_M.rename(columns={'Year_Mon_Mod':'Year_Mon'}, inplace=True)
return iDF_M
except Exception as e:
x = str(e)
print(x)
iDF_M = p.DataFrame()
return iDF_M
# Multiple components can update everytime interval gets fired.
@app.callback(Output('live-update-graph-1', 'figure'),
Input('interval-component', 'n_intervals'))
def update_graph_live(n):
try:
var1 = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
print('*' *60)
DInd = 'Y'
# Let's pass this to our map section
retDF = fetchEvent(var1, DInd)
# Create the graph with subplots
#fig = plotly.tools.make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.3, horizontal_spacing=0.2)
fig = plotly.tools.make_subplots(rows=2, cols=1, vertical_spacing=0.3, horizontal_spacing=0.2)
# Routing data to dedicated DataFrame
retDFNC = retDF.loc[(retDF['Status'] == 'NewConfirmed')]
# Adding different chart into one dashboard
# First Use Case – New Confirmed
fig.append_trace({'x':retDFNC.Year_Mon,'y':retDFNC.Brazil,'type':'scatter','name':'Brazil'},1,1)
fig.append_trace({'x':retDFNC.Year_Mon,'y':retDFNC.Canada,'type':'scatter','name':'Canada'},1,1)
fig.append_trace({'x':retDFNC.Year_Mon,'y':retDFNC.Germany,'type':'scatter','name':'Germany'},1,1)
fig.append_trace({'x':retDFNC.Year_Mon,'y':retDFNC.India,'type':'scatter','name':'India'},1,1)
fig.append_trace({'x':retDFNC.Year_Mon,'y':retDFNC.Indonesia,'type':'scatter','name':'Indonesia'},1,1)
fig.append_trace({'x':retDFNC.Year_Mon,'y':retDFNC.UnitedKingdom,'type':'scatter','name':'United Kingdom'},1,1)
fig.append_trace({'x':retDFNC.Year_Mon,'y':retDFNC.UnitedStates,'type':'scatter','name':'United States'},1,1)
return fig
except Exception as e:
x = str(e)
print(x)
# Create the graph with subplots
fig = plotly.tools.make_subplots(rows=2, cols=1, vertical_spacing=0.2)
fig['layout']['margin'] = {
'l': 30, 'r': 10, 'b': 30, 't': 10
}
fig['layout']['legend'] = {'x': 0, 'y': 1, 'xanchor': 'left'}
return fig
# Multiple components can update everytime interval gets fired.
@app.callback(Output('live-update-graph-2', 'figure'),
Input('interval-component', 'n_intervals'))
def update_graph_live(n):
try:
var1 = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
print('*' *60)
DInd = 'Y'
# Let's pass this to our map section
retDF = fetchEvent(var1, DInd)
# Create the graph with subplots
#fig = plotly.tools.make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.3, horizontal_spacing=0.2)
fig = plotly.tools.make_subplots(rows=2, cols=1, vertical_spacing=0.3, horizontal_spacing=0.2)
# Routing data to dedicated DataFrame
retDFND = retDF.loc[(retDF['Status'] == 'NewDeaths')]
# Adding different chart into one dashboard
# Second Use Case – New Confirmed
fig.append_trace({'x':retDFND.Year_Mon,'y':retDFND.Brazil,'type':'bar','name':'Brazil'},1,1)
fig.append_trace({'x':retDFND.Year_Mon,'y':retDFND.Canada,'type':'bar','name':'Canada'},1,1)
fig.append_trace({'x':retDFND.Year_Mon,'y':retDFND.Germany,'type':'bar','name':'Germany'},1,1)
fig.append_trace({'x':retDFND.Year_Mon,'y':retDFND.India,'type':'bar','name':'India'},1,1)
fig.append_trace({'x':retDFND.Year_Mon,'y':retDFND.Indonesia,'type':'bar','name':'Indonesia'},1,1)
fig.append_trace({'x':retDFND.Year_Mon,'y':retDFND.UnitedKingdom,'type':'bar','name':'United Kingdom'},1,1)
fig.append_trace({'x':retDFND.Year_Mon,'y':retDFND.UnitedStates,'type':'bar','name':'United States'},1,1)
return fig
except Exception as e:
x = str(e)
print(x)
# Create the graph with subplots
fig = plotly.tools.make_subplots(rows=2, cols=1, vertical_spacing=0.2)
fig['layout']['margin'] = {
'l': 30, 'r': 10, 'b': 30, 't': 10
}
fig['layout']['legend'] = {'x': 0, 'y': 1, 'xanchor': 'left'}
return fig
if __name__ == '__main__':
app.run_server(debug=True)

Let us explore the critical snippet as this is a brand new script –

external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']

app = dash.Dash(__name__, external_stylesheets=external_stylesheets)

app.layout = html.Div(
    html.Div([
        html.H1("Covid-19 Trend Dashboard",
                        className='text-center text-primary mb-4'),
        html.H5(children='''
            Dash: Covid-19 Trend - (Present Vs Future)
        '''),
        html.P("Covid-19: New Confirmed Cases:",
               style={"textDecoration": "underline"}),
        dcc.Graph(id='live-update-graph-1'),
        html.P("Covid-19: New Death Cases:",
               style={"textDecoration": "underline"}),
        dcc.Graph(id='live-update-graph-2'),
        dcc.Interval(
            id='interval-component',
            interval=5*1000, # in milliseconds
            n_intervals=0
        )
    ], className="row", style={'marginBottom': 10, 'marginTop': 10})
)

You need to understand the basics of HTML as this framework works seamlessly with it. To know more about the supported HTML, one needs to visit the following link.

def to_OptimizeString(row):
    try:
        x_str = str(row['Year_Mon'])

        dt_format = '%Y%m%d'
        finStr = x_str + '01'

        strReportDate = datetime.datetime.strptime(finStr, dt_format)

        return strReportDate

    except Exception as e:
        x = str(e)
        print(x)

        dt_format = '%Y%m%d'
        var = '20990101'

        strReportDate = datetime.strptime(var, dt_format)

        return strReportDate

The application is converting Year-Month combinations from string to date for better projection.

Also, we’ve implemented a dashboard that will refresh every five milliseconds.

def fetchEvent(var1, DInd):
    try:
        # Let's pass this to our map section
        iDF_M = x1.conStream(var1, DInd)

        # Converting Year_Mon to dates
        iDF_M['Year_Mon_Mod']= iDF_M.apply(lambda row: to_OptimizeString(row), axis=1)

        # Dropping old columns
        iDF_M.drop(columns=['Year_Mon'], axis=1, inplace=True)

        #Renaming new column to old column
        iDF_M.rename(columns={'Year_Mon_Mod':'Year_Mon'}, inplace=True)

        return iDF_M

    except Exception as e:
        x = str(e)
        print(x)

        iDF_M = p.DataFrame()

        return iDF_M

The application will consume all the events from the Ably Queue using the above snippet.

@app.callback(Output('live-update-graph-1', 'figure'),
              Input('interval-component', 'n_intervals'))
def update_graph_live(n):

We’ve implemented the callback mechanism to get the latest data from the Queue & then update the graph accordingly & finally share the updated chart & return that to our method, which is calling it.

# Routing data to dedicated DataFrame
retDFNC = retDF.loc[(retDF['Status'] == 'NewConfirmed')]

Based on the flag, we’re pushing the data into our target dataframe, from where the application will consume the data into the charts.

fig.append_trace({'x':retDFNC.Year_Mon,'y':retDFNC.Brazil,'type':'scatter','name':'Brazil'},1,1)
fig.append_trace({'x':retDFNC.Year_Mon,'y':retDFNC.Canada,'type':'scatter','name':'Canada'},1,1)
fig.append_trace({'x':retDFNC.Year_Mon,'y':retDFNC.Germany,'type':'scatter','name':'Germany'},1,1)
fig.append_trace({'x':retDFNC.Year_Mon,'y':retDFNC.India,'type':'scatter','name':'India'},1,1)
fig.append_trace({'x':retDFNC.Year_Mon,'y':retDFNC.Indonesia,'type':'scatter','name':'Indonesia'},1,1)
fig.append_trace({'x':retDFNC.Year_Mon,'y':retDFNC.UnitedKingdom,'type':'scatter','name':'United Kingdom'},1,1)
fig.append_trace({'x':retDFNC.Year_Mon,'y':retDFNC.UnitedStates,'type':'scatter','name':'United States'},1,1)

Different country’s KPI elements are fetched & mapped into their corresponding axis to project the graph with visual details.

Same approach goes for the other graph as well.


Run:

Let us run the application –

Run – Beginning
Run – Finishing Stage

Dashboard:

Dashboard Job Run
Dashboard Visualization

So, we’ve done it.

You will get the complete codebase in the following Github link.

I’ll bring some more exciting topic in the coming days from the Python verse.

Till then, Happy Avenging! 😀


Note: All the data & scenario posted here are representational data & scenarios & available over the internet & for educational purpose only.

One more thing you need to understand is that this prediction based on limited data points. The actual event may happen differently. Ideally, countries are taking a cue from this kind of analysis & are initiating appropriate measures to avoid the high-curve. And, that is one of the main objective of time series analysis.

There is always a room for improvement of this kind of models & the solution associated with it. I’ve shown the basic ways to achieve the same for the education purpose only.

Displaying real-time trade data in a dashboard using Python & third-party API & Streaming

Today, We want to make our use case a little bit harder & more realistic. We want to consume real-time live trade-data consuming through FinnHub API & displaying them into our dashboard using another brilliant H2O-Wave API with the help of native Python.

The use-case mentioned above is extremely useful & for that, we’ll be using the following Third-Party APIs to achieve the same –

  1. FinnHub: For more information, please click the following link.
  2. Ably: For more information, please click the following link.
  3. H2O-Wave: For more information, please click the following link.

I’m not going to discuss these topics more, as I’ve already discussed them in separate earlier posts. Please refer to the following threads for detailed level information –

creating-a-real-time-dashboard-from-streaming-data-using-python


In this post, we will address the advanced concept compared to the previous post mentioned above. Let us first look at how the run looks before we start exploring the details –

Real-time trade dashboard

Let us explore the architecture of this implementation –

Architecture Diagram

This application will talk to the FinnHub websocket & consume real-time trade data from it. And this will be temporarily stored in our Ably channels. The dashboard will pick the message & display that as soon as there is new data for that trading company.


For this use case, you need to install the following packages –

STEP – 1:

Main Packages

STEP – 2:

Main Packages – Continue

STEP – 3:

Main Packages – Continue

STEP – 4:

Main Packages – End

You can copy the following commands to install the above-mentioned packages –

pip install ably 
pip install h2o-wave
pip install pandas
pip install websocket
pip install websocket-client

Let’s explore the important data-point that you need to capture from the FinnHub portal to consume the real-time trade data –

FinnHub Portal

We’ve two main scripts. The first script will consume the streaming data into a message queue & the other one will be extracting the data from the queue & transform the data & publish it into the real-time dashboard.

1. dashboard_finnhub.py ( This native Python script will consume streaming data & create the live trade dashboard. )


###############################################################
#### Template Written By: H2O Wave ####
#### Enhanced with Streaming Data By: Satyaki De ####
#### Base Version Enhancement On: 20-Dec-2020 ####
#### Modified On 27-Jun-2021 ####
#### ####
#### Objective: This script will consume real-time ####
#### streaming data coming out from a hosted API ####
#### sources (Finnhub) using another popular third-party ####
#### service named Ably. Ably mimics pubsub Streaming ####
#### concept, which might be extremely useful for ####
#### any start-ups. ####
#### ####
#### Note: This is an enhancement of my previous post of ####
#### H2O Wave. In this case, the application will consume ####
#### streaming trade data from a live host & not generated ####
#### out of the mock data. Thus, it is more useful for the ####
#### start-ups. ####
###############################################################
import time
from h2o_wave import site, data, ui
from ably import AblyRest
import pandas as p
import json
import datetime
import logging
import platform as pl
from clsConfig import clsConfig as cf
import clsL as cl
# Disbling Warning
def warn(*args, **kwargs):
pass
import warnings
warnings.warn = warn
# Lookup functions from
# Azure cloud SQL DB
var = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
# Global Area
## Global Class
# Initiating Log Class
l = cl.clsL()
# Global Variables
# Moving previous day log files to archive directory
log_dir = cf.config['LOG_PATH']
path = cf.config['INIT_PATH']
subdir = cf.config['SUBDIR']
## End Of Global Part
class DaSeries:
def __init__(self, inputDf):
self.Df = inputDf
self.count_row = inputDf.shape[0]
self.start_pos = 0
self.end_pos = 0
self.interval = 1
def next(self):
try:
# Getting Individual Element & convert them to Series
if ((self.start_pos + self.interval) <= self.count_row):
self.end_pos = self.start_pos + self.interval
else:
self.end_pos = self.start_pos + (self.count_row self.start_pos)
split_df = self.Df.iloc[self.start_pos:self.end_pos]
if ((self.start_pos > self.count_row) | (self.start_pos == self.count_row)):
pass
else:
self.start_pos = self.start_pos + self.interval
x = float(split_df.iloc[0]['CurrentExchange'])
dx = float(split_df.iloc[0]['Change'])
# Emptying the exisitng dataframe
split_df = p.DataFrame(None)
return x, dx
except:
x = 0
dx = 0
return x, dx
class CategoricalSeries:
def __init__(self, sourceDf):
self.series = DaSeries(sourceDf)
self.i = 0
def next(self):
x, dx = self.series.next()
self.i += 1
return f'C{self.i}', x, dx
light_theme_colors = '$red $pink $purple $violet $indigo $blue $azure $cyan $teal $mint $green $amber $orange $tangerine'.split()
dark_theme_colors = '$red $pink $blue $azure $cyan $teal $mint $green $lime $yellow $amber $orange $tangerine'.split()
_color_index = 1
colors = dark_theme_colors
def next_color():
global _color_index
_color_index += 1
return colors[_color_index % len(colors)]
_curve_index = 1
curves = 'linear smooth step step-after step-before'.split()
def next_curve():
global _curve_index
_curve_index += 1
return curves[_curve_index % len(curves)]
def calc_p(row):
try:
str_calc_s1 = str(row['s_x'])
str_calc_s2 = str(row['s_y'])
if str_calc_s1 == str_calc_s2:
calc_p_val = float(row['p_y'])
else:
calc_p_val = float(row['p_x'])
return calc_p_val
except:
return 0.0
def calc_v(row):
try:
str_calc_s1 = str(row['s_x'])
str_calc_s2 = str(row['s_y'])
if str_calc_s1 == str_calc_s2:
calc_v_val = float(row['v_y'])
else:
calc_v_val = float(row['v_x'])
return calc_v_val
except:
return 0.0
def process_DF(inputDF, inputDFUnq):
try:
# Core Business logic
# The application will show default value to any
# trade-in stock in case that data doesn't consume
# from the source.
df_conv = inputDF
df_unique_fin = inputDFUnq
df_conv['max_count'] = df_conv.groupby('default_rank')['default_rank'].transform('count')
l.logr('3. max_df.csv', 'Y', df_conv, subdir)
# Sorting the output
sorted_df = df_conv.sort_values(by=['default_rank','s'], ascending=True)
# New Column List Orders
column_order = ['s', 'default_rank', 'max_count', 'p', 't', 'v']
df_fin = sorted_df.reindex(column_order, axis=1)
l.logr('4. sorted_df.csv', 'Y', df_fin, subdir)
# Now splitting the sorted df into two sets
lkp_max_count = 4
df_fin_na = df_fin[(df_fin['max_count'] == lkp_max_count)]
l.logr('5. df_fin_na.csv', 'Y', df_fin_na, subdir)
df_fin_req = df_fin[(df_fin['max_count'] != lkp_max_count)]
l.logr('6. df_fin_req.csv', 'Y', df_fin_req, subdir)
# Now to perform cross join, we will create
# a key column in both the DataFrames to
# merge on that key.
df_unique_fin['key'] = 1
df_fin_req['key'] = 1
# Dropping unwanted columns
df_unique_fin.drop(columns=['t'], axis=1, inplace=True)
l.logr('7. df_unique_slim.csv', 'Y', df_unique_fin, subdir)
# Padding with dummy key values
#merge_df = p.merge(df_unique_fin,df_fin_req,on=['s'],how='left')
merge_df = p.merge(df_unique_fin,df_fin_req,on=['key']).drop("key", 1)
l.logr('8. merge_df.csv', 'Y', merge_df, subdir)
# Sorting the output
sorted_merge_df = merge_df.sort_values(by=['default_rank_y','s_x'], ascending=True)
l.logr('9. sorted_merge_df.csv', 'Y', sorted_merge_df, subdir)
# Calling new derived logic
sorted_merge_df['derived_p'] = sorted_merge_df.apply(lambda row: calc_p(row), axis=1)
sorted_merge_df['derived_v'] = sorted_merge_df.apply(lambda row: calc_v(row), axis=1)
l.logr('10. sorted_merge_derived.csv', 'Y', sorted_merge_df, subdir)
# Dropping unwanted columns
sorted_merge_df.drop(columns=['default_rank_x', 'p_x', 'v_x', 's_y', 'p_y', 'v_y'], axis=1, inplace=True)
#Renaming the columns
sorted_merge_df.rename(columns={'s_x':'s'}, inplace=True)
sorted_merge_df.rename(columns={'default_rank_y':'default_rank'}, inplace=True)
sorted_merge_df.rename(columns={'derived_p':'p'}, inplace=True)
sorted_merge_df.rename(columns={'derived_v':'v'}, inplace=True)
l.logr('11. org_merge_derived.csv', 'Y', sorted_merge_df, subdir)
# Aligning columns
column_order = ['s', 'default_rank', 'max_count', 'p', 't', 'v']
merge_fin_df = sorted_merge_df.reindex(column_order, axis=1)
l.logr('12. merge_fin_df.csv', 'Y', merge_fin_df, subdir)
# Finally, appending these two DataFrame (df_fin_na & merge_fin_df)
frames = [df_fin_na, merge_fin_df]
fin_df = p.concat(frames, keys=["s", "default_rank", "max_count"])
l.logr('13. fin_df.csv', 'Y', fin_df, subdir)
# Final clearance & organization
fin_df.drop(columns=['default_rank', 'max_count'], axis=1, inplace=True)
l.logr('14. Final.csv', 'Y', fin_df, subdir)
# Adjusting key columns
fin_df.rename(columns={'s':'Company'}, inplace=True)
fin_df.rename(columns={'p':'CurrentExchange'}, inplace=True)
fin_df.rename(columns={'v':'Change'}, inplace=True)
l.logr('15. TransormedFinal.csv', 'Y', fin_df, subdir)
return fin_df
except Exception as e:
print('$' * 120)
x = str(e)
print(x)
print('$' * 120)
df = p.DataFrame()
return df
def create_dashboard(update_freq=0.0):
page = site['/dashboard_finnhub']
general_log_path = str(cf.config['LOG_PATH'])
ably_id = str(cf.config['ABLY_ID'])
# Enabling Logging Info
logging.basicConfig(filename=general_log_path + 'Realtime_Stock.log', level=logging.INFO)
os_det = pl.system()
if os_det == "Windows":
src_path = path + '\\' + 'data\\'
else:
src_path = path + '/' + 'data/'
# Fetching the data
client = AblyRest(ably_id)
channel = client.channels.get('sd_channel')
message_page = channel.history()
# Counter Value
cnt = 0
# Declaring Global Data-Frame
df_conv = p.DataFrame()
for i in message_page.items:
print('Last Msg: {}'.format(i.data))
json_data = json.loads(i.data)
# Converting JSON to Dataframe
df = p.json_normalize(json_data)
df.columns = df.columns.map(lambda x: x.split(".")[1])
if cnt == 0:
df_conv = df
else:
d_frames = [df_conv, df]
df_conv = p.concat(d_frames)
cnt += 1
# Resetting the Index Value
df_conv.reset_index(drop=True, inplace=True)
print('DF:')
print(df_conv)
# Writing to the file
l.logr('1. DF_modified.csv', 'Y', df_conv, subdir)
# Dropping unwanted columns
df_conv.drop(columns=['c'], axis=1, inplace=True)
df_conv['default_rank'] = df_conv.groupby(['s']).cumcount() + 1
lkp_rank = 1
df_unique = df_conv[(df_conv['default_rank'] == lkp_rank)]
# New Column List Orders
column_order = ['s', 'default_rank', 'p', 't', 'v']
df_unique_fin = df_unique.reindex(column_order, axis=1)
print('Rank DF Unique:')
print(df_unique_fin)
l.logr('2. df_unique.csv', 'Y', df_unique_fin, subdir)
# Capturing transformed values into a DataFrame
# Depending on your logic, you'll implement that inside
# the process_DF functions
fin_df = process_DF(df_conv, df_unique_fin)
df_unq_fin = df_unique_fin.copy()
df_unq_fin.rename(columns={'s':'Company'}, inplace=True)
df_unq_fin.rename(columns={'p':'CurrentExchange'}, inplace=True)
df_unq_fin.rename(columns={'v':'Change'}, inplace=True)
df_unq_fin.drop(columns=['default_rank','key'], axis=1, inplace=True)
l.logr('16. df_unq_fin.csv', 'Y', df_unq_fin, subdir)
df_unq_finale = df_unq_fin.sort_values(by=['Company'], ascending=True)
l.logr('17. df_unq_finale.csv', 'Y', df_unq_finale, subdir)
# Final clearance for better understanding of data
fin_df.drop(columns=['t'], axis=1, inplace=True)
l.logr('18. CleanFinal.csv', 'Y', fin_df, subdir)
count_row = df_unq_finale.shape[0]
large_lines = []
start_pos = 0
end_pos = 0
interval = 1
# Converting dataframe to a desired Series
f = CategoricalSeries(fin_df)
for j in range(count_row):
# Getting the series values from above
cat, val, pc = f.next()
# Getting Individual Element & convert them to Series
if ((start_pos + interval) <= count_row):
end_pos = start_pos + interval
else:
end_pos = start_pos + (count_row start_pos)
split_df = df_unq_finale.iloc[start_pos:end_pos]
if ((start_pos > count_row) | (start_pos == count_row)):
pass
else:
start_pos = start_pos + interval
x_currency = str(split_df.iloc[0]['Company'])
####################################################
##### Debug Purpose #########
####################################################
print('Company: ', x_currency)
print('J: ', str(j))
print('Cat: ', cat)
####################################################
##### End Of Debug #######
####################################################
c = page.add(f'e{j+1}', ui.tall_series_stat_card(
box=f'{j+1} 1 1 2',
title=x_currency,
value='=${{intl qux minimum_fraction_digits=2 maximum_fraction_digits=2}}',
aux_value='={{intl quux style="percent" minimum_fraction_digits=1 maximum_fraction_digits=1}}',
data=dict(qux=val, quux=pc),
plot_type='area',
plot_category='foo',
plot_value='qux',
plot_color=next_color(),
plot_data=data('foo qux', 15),
plot_zero_value=0,
plot_curve=next_curve(),
))
large_lines.append((f, c))
page.save()
while update_freq > 0:
time.sleep(update_freq)
for f, c in large_lines:
cat, val, pc = f.next()
print('Update Cat: ', cat)
print('Update Val: ', val)
print('Update pc: ', pc)
print('*' * 160)
c.data.qux = val
c.data.quux = pc / 100
c.plot_data[1] = [cat, val]
page.save()
if __name__ == "__main__":
try:
# Main Calling script
create_dashboard(update_freq=0.25)
except Exception as e:
x = str(e)
print(x)

Let’s explore the key snippets from the above script –

def process_DF(inputDF, inputDFUnq):
    try:
        # Core Business logic
        # The application will show default value to any
        # trade-in stock in case that data doesn't consume
        # from the source.
        
        # Getting block count
        #df_conv['block_count'] = df_conv.groupby(['default_rank']).cumcount()
        #l.logr('3. block_df.csv', 'Y', df_conv, subdir)

        # Getting block count
        #df_conv['max_count'] = df_conv.groupby(['default_rank']).size()
        #df_conv_fin = df_conv.groupby(['default_rank']).agg(['count'])
        #df_conv_fin = df_conv.value_counts(['default_rank']).reset_index(name='max_count')
        #df_conv_fin = df_conv.value_counts(['default_rank'])
        df_conv = inputDF
        df_unique_fin = inputDFUnq

        df_conv['max_count'] = df_conv.groupby('default_rank')['default_rank'].transform('count')
        l.logr('3. max_df.csv', 'Y', df_conv, subdir)


        # Sorting the output
        sorted_df = df_conv.sort_values(by=['default_rank','s'], ascending=True)

        # New Column List Orders
        column_order = ['s', 'default_rank', 'max_count', 'p', 't', 'v']
        df_fin = sorted_df.reindex(column_order, axis=1)

        l.logr('4. sorted_df.csv', 'Y', df_fin, subdir)

        # Now splitting the sorted df into two sets
        lkp_max_count = 4
        df_fin_na = df_fin[(df_fin['max_count'] == lkp_max_count)]

        l.logr('5. df_fin_na.csv', 'Y', df_fin_na, subdir)

        df_fin_req = df_fin[(df_fin['max_count'] != lkp_max_count)]
        l.logr('6. df_fin_req.csv', 'Y', df_fin_req, subdir)

        # Now to perform cross join, we will create
        # a key column in both the DataFrames to
        # merge on that key.
        df_unique_fin['key'] = 1
        df_fin_req['key'] = 1

        # Dropping unwanted columns
        df_unique_fin.drop(columns=['t'], axis=1, inplace=True)
        l.logr('7. df_unique_slim.csv', 'Y', df_unique_fin, subdir)

        # Padding with dummy key values
        #merge_df = p.merge(df_unique_fin,df_fin_req,on=['s'],how='left')
        merge_df = p.merge(df_unique_fin,df_fin_req,on=['key']).drop("key", 1)

        l.logr('8. merge_df.csv', 'Y', merge_df, subdir)

        # Sorting the output
        sorted_merge_df = merge_df.sort_values(by=['default_rank_y','s_x'], ascending=True)

        l.logr('9. sorted_merge_df.csv', 'Y', sorted_merge_df, subdir)

        # Calling new derived logic
        sorted_merge_df['derived_p'] = sorted_merge_df.apply(lambda row: calc_p(row), axis=1)
        sorted_merge_df['derived_v'] = sorted_merge_df.apply(lambda row: calc_v(row), axis=1)

        l.logr('10. sorted_merge_derived.csv', 'Y', sorted_merge_df, subdir)

        # Dropping unwanted columns
        sorted_merge_df.drop(columns=['default_rank_x', 'p_x', 'v_x', 's_y', 'p_y', 'v_y'], axis=1, inplace=True)

        #Renaming the columns
        sorted_merge_df.rename(columns={'s_x':'s'}, inplace=True)
        sorted_merge_df.rename(columns={'default_rank_y':'default_rank'}, inplace=True)
        sorted_merge_df.rename(columns={'derived_p':'p'}, inplace=True)
        sorted_merge_df.rename(columns={'derived_v':'v'}, inplace=True)

        l.logr('11. org_merge_derived.csv', 'Y', sorted_merge_df, subdir)

        # Aligning columns
        column_order = ['s', 'default_rank', 'max_count', 'p', 't', 'v']
        merge_fin_df = sorted_merge_df.reindex(column_order, axis=1)

        l.logr('12. merge_fin_df.csv', 'Y', merge_fin_df, subdir)

        # Finally, appending these two DataFrame (df_fin_na & merge_fin_df)
        frames = [df_fin_na, merge_fin_df]
        fin_df = p.concat(frames, keys=["s", "default_rank", "max_count"])

        l.logr('13. fin_df.csv', 'Y', fin_df, subdir)

        # Final clearance & organization
        fin_df.drop(columns=['default_rank', 'max_count'], axis=1, inplace=True)

        l.logr('14. Final.csv', 'Y', fin_df, subdir)

        # Adjusting key columns
        fin_df.rename(columns={'s':'Company'}, inplace=True)
        fin_df.rename(columns={'p':'CurrentExchange'}, inplace=True)
        fin_df.rename(columns={'v':'Change'}, inplace=True)

        l.logr('15. TransormedFinal.csv', 'Y', fin_df, subdir)

        return fin_df
    except Exception as e:
        print('$' * 120)

        x = str(e)
        print(x)

        print('$' * 120)

        df = p.DataFrame()

        return df

The above function will check if the queue is sending all the key trade-in data for all the companies. In our use case, we’re testing with the four companies & they are as follows –

a. AAPL
b. AMZN
c. BINANCE:BTCUSDT
d. IC MARKETS:1

Every message is containing data from all of these four companies together. If any of the company’s data is missing, this transformation will add a dummy record of that missing company to make the uniform number of entries in each message bouquet. And dummy trade-in values added for all the missing information.

def calc_p(row):
    try:
        str_calc_s1 = str(row['s_x'])
        str_calc_s2 = str(row['s_y'])

        if str_calc_s1 == str_calc_s2:
            calc_p_val = float(row['p_y'])
        else:
            calc_p_val = float(row['p_x'])

        return calc_p_val
    except:
        return 0.0

def calc_v(row):
    try:
        str_calc_s1 = str(row['s_x'])
        str_calc_s2 = str(row['s_y'])

        if str_calc_s1 == str_calc_s2:
            calc_v_val = float(row['v_y'])
        else:
            calc_v_val = float(row['v_x'])

        return calc_v_val
    except:
        return 0.0

The above snippet will capture the default values for those missing records.

    client = AblyRest(ably_id)
    channel = client.channels.get('sd_channel')

    message_page = channel.history()

In the above snippet, the application will consume the streaming data from the Ably queue.

for i in message_page.items:
        print('Last Msg: {}'.format(i.data))
        json_data = json.loads(i.data)

        # Converting JSON to Dataframe
        df = p.json_normalize(json_data)
        df.columns = df.columns.map(lambda x: x.split(".")[-1])

        if cnt == 0:
            df_conv = df
        else:
            d_frames = [df_conv, df]
            df_conv = p.concat(d_frames)

        cnt += 1

The above snippet will convert the streaming messages to a more meaningful pandas data-frame, which we can use for a wide variety of analytics.

    # Converting dataframe to a desired Series
    f = CategoricalSeries(fin_df)

    for j in range(count_row):
        # Getting the series values from above
        cat, val, pc = f.next()

        # Getting Individual Element & convert them to Series
        if ((start_pos + interval) <= count_row):
            end_pos = start_pos + interval
        else:
            end_pos = start_pos + (count_row - start_pos)

        split_df = df_unq_finale.iloc[start_pos:end_pos]

        if ((start_pos > count_row) | (start_pos == count_row)):
            pass
        else:
            start_pos = start_pos + interval

        x_currency = str(split_df.iloc[0]['Company'])

        ####################################################
        ##### Debug Purpose                        #########
        ####################################################
        print('Company: ', x_currency)
        print('J: ', str(j))
        print('Cat: ', cat)
        ####################################################
        #####   End Of Debug                         #######
        ####################################################

        c = page.add(f'e{j+1}', ui.tall_series_stat_card(
            box=f'{j+1} 1 1 2',
            title=x_currency,
            value='=${{intl qux minimum_fraction_digits=2 maximum_fraction_digits=2}}',
            aux_value='={{intl quux style="percent" minimum_fraction_digits=1 maximum_fraction_digits=1}}',
            data=dict(qux=val, quux=pc),
            plot_type='area',
            plot_category='foo',
            plot_value='qux',
            plot_color=next_color(),
            plot_data=data('foo qux', -15),
            plot_zero_value=0,
            plot_curve=next_curve(),
        ))
        large_lines.append((f, c))

    page.save()

    while update_freq > 0:

        time.sleep(update_freq)

        for f, c in large_lines:
            cat, val, pc = f.next()

            print('Update Cat: ', cat)
            print('Update Val: ', val)
            print('Update pc: ', pc)
            print('*' * 160)

            c.data.qux = val
            c.data.quux = pc / 100
            c.plot_data[-1] = [cat, val]

        page.save()

The above snippet will consume the data into H2O-Wave driven framework, which will expose this data into beautiful & easily representable GUI-based solutions through an interactive dashboard.


2. publish_ably_mod.py ( This native Python script will consume streaming data into Ably message Queue )


###############################################################
#### ####
#### Written By: Satyaki De ####
#### Written Date: 26-Jun-2021 ####
#### ####
#### Objective: This script will consume real-time ####
#### streaming data coming out from a hosted API ####
#### sources (Finnhub) using another popular third-party ####
#### service named Ably. Ably mimics pubsub Streaming ####
#### concept, which might be extremely useful for ####
#### any start-ups. ####
#### ####
###############################################################
from ably import AblyRest
import logging
import json
# generate random floating point values
from random import seed
from random import random
# seed random number generator
import websocket
import json
from clsConfig import clsConfig as cf
seed(1)
# Global Section
logger = logging.getLogger('ably')
logger.addHandler(logging.StreamHandler())
ably_id = str(cf.config['ABLY_ID'])
ably = AblyRest(ably_id)
channel = ably.channels.get('sd_channel')
# End Of Global Section
def on_message(ws, message):
print("*" * 60)
res = json.loads(message)
jsBody = res["data"]
jdata_dyn = json.dumps(jsBody)
print(jdata_dyn)
# JSON data
# This is the default data for all the identified category
# we've prepared. You can extract this dynamically. Or, By
# default you can set their base trade details.
json_data = [{
"c": "null",
"p": 0.01,
"s": "AAPL",
"t": 1624715406407,
"v": 0.01
},{
"c": "null",
"p": 0.01,
"s": "AMZN",
"t": 1624715406408,
"v": 0.01
},{
"c": "null",
"p": 0.01,
"s": "BINANCE:BTCUSDT",
"t": 1624715406409,
"v": 0.01
},
{
"c": "null",
"p": 0.01,
"s": "IC MARKETS:1",
"t": 1624715406410,
"v": 0.01
}]
jdata = json.dumps(json_data)
# Publish a message to the sd_channel channel
channel.publish('event', jdata)
# Publish rest of the messages to the sd_channel channel
channel.publish('event', jdata_dyn)
jsBody = []
jdata_dyn = ''
def on_error(ws, error):
print(error)
def on_close(ws):
print("### closed ###")
def on_open(ws):
# Invoking Individual Company Trade Queries
ws.send('{"type":"subscribe","symbol":"AAPL"}')
ws.send('{"type":"subscribe","symbol":"AMZN"}')
ws.send('{"type":"subscribe","symbol":"BINANCE:BTCUSDT"}')
ws.send('{"type":"subscribe","symbol":"IC MARKETS:1"}')
if __name__ == "__main__":
websocket.enableTrace(True)
ws = websocket.WebSocketApp("wss://ws.finnhub.io?token=jfhfyr8474rpv6av0",
on_message = on_message,
on_error = on_error,
on_close = on_close)
ws.on_open = on_open
ws.run_forever()

The key snippet from the above script –

    json_data = [{
        "c": "null",
        "p": 0.01,
        "s": "AAPL",
        "t": 1624715406407,
        "v": 0.01
    },{
        "c": "null",
        "p": 0.01,
        "s": "AMZN",
        "t": 1624715406408,
        "v": 0.01
    },{
        "c": "null",
        "p": 0.01,
        "s": "BINANCE:BTCUSDT",
        "t": 1624715406409,
        "v": 0.01
    },
        {
        "c": "null",
        "p": 0.01,
        "s": "IC MARKETS:1",
        "t": 1624715406410,
        "v": 0.01
        }]

As we already discussed, we’ll pass a default set of data for all the candidate companies.

    # Publish a message to the sd_channel channel
    channel.publish('event', jdata)

    # Publish rest of the messages to the sd_channel channel
    channel.publish('event', jdata_dyn)

Publish the messages to the created channel.

def on_open(ws):
    # Invoking Individual Company Trade Queries
    ws.send('{"type":"subscribe","symbol":"AAPL"}')
    ws.send('{"type":"subscribe","symbol":"AMZN"}')
    ws.send('{"type":"subscribe","symbol":"BINANCE:BTCUSDT"}')
    ws.send('{"type":"subscribe","symbol":"IC MARKETS:1"}')

if __name__ == "__main__":
    websocket.enableTrace(True)
    ws = websocket.WebSocketApp("wss://ws.finnhub.io?token=hdhdjdj9494ld934v6av0",
                              on_message = on_message,
                              on_error = on_error,
                              on_close = on_close)

Send the company-specific trade queries through websocket apps to submit that to FinnHub.

3. clsConfig.py ( This file contains the configuration details. )


################################################
#### Written By: SATYAKI DE ####
#### Written On: 15-May-2020 ####
#### ####
#### Objective: This script is a config ####
#### file, contains all the keys for ####
#### Machine-Learning. Application will ####
#### process these information & perform ####
#### various analysis on Linear-Regression. ####
################################################
import os
import platform as pl
class clsConfig(object):
Curr_Path = os.path.dirname(os.path.realpath(__file__))
os_det = pl.system()
if os_det == "Windows":
sep = '\\'
else:
sep = '/'
config = {
'APP_ID': 1,
'ARCH_DIR': Curr_Path + sep + 'arch' + sep,
'PROFILE_PATH': Curr_Path + sep + 'profile' + sep,
'LOG_PATH': Curr_Path + sep + 'log' + sep,
'REPORT_PATH': Curr_Path + sep + 'report',
'FILE_NAME': Curr_Path + sep + 'Data' + sep + 'TradeIn.csv',
'SRC_PATH': Curr_Path + sep + 'Data' + sep,
'APP_DESC_1': 'H2O Wave Integration with FinHubb!',
'DEBUG_IND': 'N',
'INIT_PATH': Curr_Path,
'SUBDIR' : 'data',
'ABLY_ID': 'WWP309489.93jfkT:32kkdhdJjdued79e'
}

view raw

clsConfig.py

hosted with ❤ by GitHub


Let’s explore the directory structure –

MAC Directory

Let’s run the application –

Step 1:

Starting of Wave Server

Step 2:

Triggering message consumption job

Step 3:

Triggering the main application

You can monitor the message consumption from your Ably portal as follows –

Message Consumption

If you want to know more detail, then you need to scroll down the page, where you will get this additional information –

Message spike during consumption

And, the final output in the interactive dashboard will be look like the below screenshot –

Interactive Real-time Dashboard

So, we’ve done it.

You will get the complete codebase in the following Github link.

I’ll bring some more exciting topic in the coming days from the Python verse.

Till then, Happy Avenging! 😀

Note: All the data & scenario posted here are representational data & scenarios & available over the internet & for educational purpose only.