Real-time augmented reality (AR) using Python-based Computer Vision

Hi Team,

Today, I’m going to discuss another Computer Vision installment. I’ll discuss how to implement Augmented Reality using Open-CV Computer Vision with full audio. We will be using part of a Bengali OTT Series called “Feludar Goendagiri” entirely for educational purposes & also as a tribute to the great legendary director, late Satyajit Roy. To know more about him, please click the following link.

Why don’t we see the demo first before jumping into the technical details?


Demo

Architecture:

Let us understand the architecture –

Process Flow

The above diagram shows that the application, which uses the Open-CV, analyzes individual frames from the source & blends that with the video trailer. Finally, it creates another video by correctly mixing the source audio.

Python Packages:

Following are the python packages that are necessary to develop this brilliant use case –

pip install opencv-python
pip install pygame

CODE:

Let us now understand the code. For this use case, we will only discuss three python scripts. However, we need more than these three. However, we have already discussed them in some of the early posts. Hence, we will skip them here.

  • clsAugmentedReality.py (This is the main class of python script that will embed the source video with the WebCAM streams in real-time.)


##################################################
#### Written By: SATYAKI DE ####
#### Written On: 20-Jun-2022 ####
#### Modified On 25-Jun-2022 ####
#### ####
#### Objective: This is the main class of ####
#### python script that will embed the source ####
#### video with the WebCAM streams in ####
#### real-time. ####
##################################################
# Importing necessary packages
import numpy as np
import cv2
from clsConfig import clsConfig as cf
# Initialize our cached reference points
CACHED_REF_PTS = None
class clsAugmentedReality:
def __init__(self):
self.TOP_LEFT_X = int(cf.conf['TOP_LEFT_X'])
self.TOP_LEFT_Y = int(cf.conf['TOP_LEFT_Y'])
self.TOP_RIGHT_X = int(cf.conf['TOP_RIGHT_X'])
self.TOP_RIGHT_Y = int(cf.conf['TOP_RIGHT_Y'])
self.BOTTOM_RIGHT_X = int(cf.conf['BOTTOM_RIGHT_X'])
self.BOTTOM_RIGHT_Y = int(cf.conf['BOTTOM_RIGHT_Y'])
self.BOTTOM_LEFT_X = int(cf.conf['BOTTOM_LEFT_X'])
self.BOTTOM_LEFT_Y = int(cf.conf['BOTTOM_LEFT_Y'])
def getWarpImages(self, frame, source, cornerIDs, arucoDict, arucoParams, zoomFlag, useCache=False):
try:
# Assigning values
TOP_LEFT_X = self.TOP_LEFT_X
TOP_LEFT_Y = self.TOP_LEFT_Y
TOP_RIGHT_X = self.TOP_RIGHT_X
TOP_RIGHT_Y = self.TOP_RIGHT_Y
BOTTOM_RIGHT_X = self.BOTTOM_RIGHT_X
BOTTOM_RIGHT_Y = self.BOTTOM_RIGHT_Y
BOTTOM_LEFT_X = self.BOTTOM_LEFT_X
BOTTOM_LEFT_Y = self.BOTTOM_LEFT_Y
# Grab a reference to our cached reference points
global CACHED_REF_PTS
if source is None:
raise
# Grab the width and height of the frame and source image,
# respectively
# Extracting Frame from Camera
# Exracting Source from Video
(imgH, imgW) = frame.shape[:2]
(srcH, srcW) = source.shape[:2]
# Detect Aruco markers in the input frame
(corners, ids, rejected) = cv2.aruco.detectMarkers(frame, arucoDict, parameters=arucoParams)
print('Ids: ', str(ids))
print('Rejected: ', str(rejected))
# if we *did not* find our four ArUco markers, initialize an
# empty IDs list, otherwise flatten the ID list
print('Detecting Corners: ', str(len(corners)))
ids = np.array([]) if len(corners) != 4 else ids.flatten()
# Initialize our list of reference points
refPts = []
refPtTL1 = []
# Loop over the IDs of the ArUco markers in Top-Left, Top-Right,
# Bottom-Right, and Bottom-Left order
for i in cornerIDs:
# Grab the index of the corner with the current ID
j = np.squeeze(np.where(ids == i))
# If we receive an empty list instead of an integer index,
# then we could not find the marker with the current ID
if j.size == 0:
continue
# Otherwise, append the corner (x, y)-coordinates to our list
# of reference points
corner = np.squeeze(corners[j])
refPts.append(corner)
# Check to see if we failed to find the four ArUco markers
if len(refPts) != 4:
# If we are allowed to use cached reference points, fall
# back on them
if useCache and CACHED_REF_PTS is not None:
refPts = CACHED_REF_PTS
# Otherwise, we cannot use the cache and/or there are no
# previous cached reference points, so return early
else:
return None
# If we are allowed to use cached reference points, then update
# the cache with the current set
if useCache:
CACHED_REF_PTS = refPts
# Unpack our Aruco reference points and use the reference points
# to define the Destination transform matrix, making sure the
# points are specified in Top-Left, Top-Right, Bottom-Right, and
# Bottom-Left order
(refPtTL, refPtTR, refPtBR, refPtBL) = refPts
dstMat = [refPtTL[0], refPtTR[1], refPtBR[2], refPtBL[3]]
dstMat = np.array(dstMat)
# For zoom option recalculating all the 4 points
refPtTL1_L_X = refPtTL[0][0]TOP_LEFT_X
refPtTL1_L_Y = refPtTL[0][1]TOP_LEFT_Y
refPtTL1.append((refPtTL1_L_X,refPtTL1_L_Y))
refPtTL1_R_X = refPtTL[1][0]+TOP_RIGHT_X
refPtTL1_R_Y = refPtTL[1][1]+TOP_RIGHT_Y
refPtTL1.append((refPtTL1_R_X,refPtTL1_R_Y))
refPtTD1_L_X = refPtTL[2][0]+BOTTOM_RIGHT_X
refPtTD1_L_Y = refPtTL[2][1]+BOTTOM_RIGHT_Y
refPtTL1.append((refPtTD1_L_X,refPtTD1_L_Y))
refPtTD1_R_X = refPtTL[3][0]BOTTOM_LEFT_X
refPtTD1_R_Y = refPtTL[3][1]+BOTTOM_LEFT_Y
refPtTL1.append((refPtTD1_R_X,refPtTD1_R_Y))
dstMatMod = [refPtTL1[0], refPtTL1[1], refPtTL1[2], refPtTL1[3]]
dstMatMod = np.array(dstMatMod)
# Define the transform matrix for the *source* image in Top-Left,
# Top-Right, Bottom-Right, and Bottom-Left order
srcMat = np.array([[0, 0], [srcW, 0], [srcW, srcH], [0, srcH]])
# Compute the homography matrix and then warp the source image to
# the destination based on the homography depending upon the
# zoom flag
if zoomFlag == 1:
(H, _) = cv2.findHomography(srcMat, dstMat)
else:
(H, _) = cv2.findHomography(srcMat, dstMatMod)
warped = cv2.warpPerspective(source, H, (imgW, imgH))
# Construct a mask for the source image now that the perspective
# warp has taken place (we'll need this mask to copy the source
# image into the destination)
mask = np.zeros((imgH, imgW), dtype="uint8")
if zoomFlag == 1:
cv2.fillConvexPoly(mask, dstMat.astype("int32"), (255, 255, 255), cv2.LINE_AA)
else:
cv2.fillConvexPoly(mask, dstMatMod.astype("int32"), (255, 255, 255), cv2.LINE_AA)
# This optional step will give the source image a black
# border surrounding it when applied to the source image, you
# can apply a dilation operation
rect = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
mask = cv2.dilate(mask, rect, iterations=2)
# Create a three channel version of the mask by stacking it
# depth-wise, such that we can copy the warped source image
# into the input image
maskScaled = mask.copy() / 255.0
maskScaled = np.dstack([maskScaled] * 3)
# Copy the warped source image into the input image by
# (1) Multiplying the warped image and masked together,
# (2) Then multiplying the original input image with the
# mask (giving more weight to the input where there
# are not masked pixels), and
# (3) Adding the resulting multiplications together
warpedMultiplied = cv2.multiply(warped.astype("float"), maskScaled)
imageMultiplied = cv2.multiply(frame.astype(float), 1.0 maskScaled)
output = cv2.add(warpedMultiplied, imageMultiplied)
output = output.astype("uint8")
# Return the output frame to the calling function
return output
except Exception as e:
# Delibarately raising the issue
# That way the control goes to main calling methods
# exception section
raise

Please find the key snippet from the above script –

(imgH, imgW) = frame.shape[:2]
(srcH, srcW) = source.shape[:2]

# Detect Aruco markers in the input frame
(corners, ids, rejected) = cv2.aruco.detectMarkers(frame, arucoDict, parameters=arucoParams)

Identifying the Aruco markers are key here. The above lines help the program detect all four corners.

However, let us discuss more on the Aruco markers & strategies that I’ve used for several different surfaces.

As you can see, the right-hand side Aruco marker is tiny compared to the left one. Hence, that one will be ideal for a curve surface like Coffee Mug, Bottle rather than a flat surface.

Also, we’ve demonstrated the zoom capability with the smaller Aruco marker that will Augment almost double the original surface area.

Let us understand why we need that; as you know, any spherical surface like a bottle is round-shaped. Hence, detecting relatively more significant Aruco markers in four corners will be difficult for any camera to identify.

Hence, we need a process where close four corners can be extrapolated mathematically to relatively larger projected areas easily detectable by any WebCAM.

Let’s observe the following figure –

Simulated Extrapolated corners

As you can see that the original position of the four corners is represented using the following points, i.e., (x1, y1), (x2, y2), (x3, y3) & (x4, y4).

And these positions are very close to each other. Hence, it will be easier for the camera to detect all the points (like a plain surface) without many retries.

And later, you can add specific values of x & y to them to get the derived four corners as shown in the above figures through the following points, i.e. (x1.1, y1.1), (x2.1, y2.1), (x3.1, y3.1) & (x4.1, y4.1).

# Loop over the IDs of the ArUco markers in Top-Left, Top-Right,
# Bottom-Right, and Bottom-Left order
for i in cornerIDs:
  # Grab the index of the corner with the current ID
  j = np.squeeze(np.where(ids == i))

  # If we receive an empty list instead of an integer index,
  # then we could not find the marker with the current ID
  if j.size == 0:
    continue

  # Otherwise, append the corner (x, y)-coordinates to our list
  # of reference points
  corner = np.squeeze(corners[j])
  refPts.append(corner)

# Check to see if we failed to find the four ArUco markers
if len(refPts) != 4:
  # If we are allowed to use cached reference points, fall
  # back on them
  if useCache and CACHED_REF_PTS is not None:
    refPts = CACHED_REF_PTS

  # Otherwise, we cannot use the cache and/or there are no
  # previous cached reference points, so return early
  else:
    return None

# If we are allowed to use cached reference points, then update
# the cache with the current set
if useCache:
  CACHED_REF_PTS = refPts

# Unpack our Aruco reference points and use the reference points
# to define the Destination transform matrix, making sure the
# points are specified in Top-Left, Top-Right, Bottom-Right, and
# Bottom-Left order
(refPtTL, refPtTR, refPtBR, refPtBL) = refPts
dstMat = [refPtTL[0], refPtTR[1], refPtBR[2], refPtBL[3]]
dstMat = np.array(dstMat)

In the above snippet, the application will scan through all the points & try to detect Aruco markers & then create a list of reference points, which will later be used to define the destination transformation matrix.

# For zoom option recalculating all the 4 points
refPtTL1_L_X = refPtTL[0][0]-TOP_LEFT_X
refPtTL1_L_Y = refPtTL[0][1]-TOP_LEFT_Y

refPtTL1.append((refPtTL1_L_X,refPtTL1_L_Y))

refPtTL1_R_X = refPtTL[1][0]+TOP_RIGHT_X
refPtTL1_R_Y = refPtTL[1][1]+TOP_RIGHT_Y

refPtTL1.append((refPtTL1_R_X,refPtTL1_R_Y))

refPtTD1_L_X = refPtTL[2][0]+BOTTOM_RIGHT_X
refPtTD1_L_Y = refPtTL[2][1]+BOTTOM_RIGHT_Y

refPtTL1.append((refPtTD1_L_X,refPtTD1_L_Y))

refPtTD1_R_X = refPtTL[3][0]-BOTTOM_LEFT_X
refPtTD1_R_Y = refPtTL[3][1]+BOTTOM_LEFT_Y

refPtTL1.append((refPtTD1_R_X,refPtTD1_R_Y))

dstMatMod = [refPtTL1[0], refPtTL1[1], refPtTL1[2], refPtTL1[3]]
dstMatMod = np.array(dstMatMod)

The above snippets calculate the revised points for the zoom-out capabilities as discussed in one of the earlier figures.

# Define the transform matrix for the *source* image in Top-Left,
# Top-Right, Bottom-Right, and Bottom-Left order
srcMat = np.array([[0, 0], [srcW, 0], [srcW, srcH], [0, srcH]])

The above snippet will create a transformation matrix for the video trailer.

# Compute the homography matrix and then warp the source image to
# the destination based on the homography depending upon the
# zoom flag
if zoomFlag == 1:
  (H, _) = cv2.findHomography(srcMat, dstMat)
else:
  (H, _) = cv2.findHomography(srcMat, dstMatMod)

warped = cv2.warpPerspective(source, H, (imgW, imgH))

# Construct a mask for the source image now that the perspective
# warp has taken place (we'll need this mask to copy the source
# image into the destination)
mask = np.zeros((imgH, imgW), dtype="uint8")
if zoomFlag == 1:
  cv2.fillConvexPoly(mask, dstMat.astype("int32"), (255, 255, 255), cv2.LINE_AA)
else:
  cv2.fillConvexPoly(mask, dstMatMod.astype("int32"), (255, 255, 255), cv2.LINE_AA)

# This optional step will give the source image a black
# border surrounding it when applied to the source image, you
# can apply a dilation operation
rect = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
mask = cv2.dilate(mask, rect, iterations=2)

# Create a three channel version of the mask by stacking it
# depth-wise, such that we can copy the warped source image
# into the input image
maskScaled = mask.copy() / 255.0
maskScaled = np.dstack([maskScaled] * 3)

# Copy the warped source image into the input image by
# (1) Multiplying the warped image and masked together,
# (2) Then multiplying the original input image with the
#     mask (giving more weight to the input where there
#     are not masked pixels), and
# (3) Adding the resulting multiplications together
warpedMultiplied = cv2.multiply(warped.astype("float"), maskScaled)
imageMultiplied = cv2.multiply(frame.astype(float), 1.0 - maskScaled)
output = cv2.add(warpedMultiplied, imageMultiplied)
output = output.astype("uint8")

Finally, depending upon the zoom flag, the application will create a warped image surrounded by an optionally black border.

  • clsEmbedVideoWithStream.py (This is the main class of python script that will invoke the clsAugmentedReality class to initiate augment reality after splitting the audio & video & then project them via the Web-CAM with a seamless broadcast.)


##################################################
#### Written By: SATYAKI DE ####
#### Written On: 22-Jun-2022 ####
#### Modified On 25-Jun-2022 ####
#### ####
#### Objective: This is the main class of ####
#### python script that will invoke the ####
#### clsAugmentedReality class to initiate ####
#### augment reality after splitting the ####
#### audio & video & then project them via ####
#### the Web-CAM with a seamless broadcast. ####
##################################################
# Importing necessary packages
import clsAugmentedReality as ar
from clsConfig import clsConfig as cf
from imutils.video import VideoStream
from collections import deque
import imutils
import time
import cv2
import subprocess
import os
import pygame
import time
import threading
import sys
###############################################
### Global Section ###
###############################################
# Instantiating the dependant class
x1 = ar.clsAugmentedReality()
###############################################
### End of Global Section ###
###############################################
class BreakLoop(Exception):
pass
class clsEmbedVideoWithStream:
def __init__(self):
self.sep = str(cf.conf['SEP'])
self.Curr_Path = str(cf.conf['INIT_PATH'])
self.FileName = str(cf.conf['FILE_NAME'])
self.CacheL = int(cf.conf['CACHE_LIM'])
self.FileName_1 = str(cf.conf['FILE_NAME_1'])
self.audioLen = int(cf.conf['audioLen'])
self.audioFreq = float(cf.conf['audioFreq'])
self.videoFrame = float(cf.conf['videoFrame'])
self.stopFlag=cf.conf['stopFlag']
self.zFlag=int(cf.conf['zoomFlag'])
self.title = str(cf.conf['TITLE'])
def playAudio(self, audioFile, audioLen, freq, stopFlag=False):
try:
pygame.mixer.init()
pygame.init()
pygame.mixer.music.load(audioFile)
pygame.mixer.music.set_volume(10)
val = int(audioLen)
i = 0
while i < val:
pygame.mixer.music.play(loops=0, start=float(i))
time.sleep(freq)
i = i + 1
if (i >= val):
raise BreakLoop
if (stopFlag==True):
raise BreakLoop
return 0
except BreakLoop as s:
return 0
except Exception as e:
x = str(e)
print(x)
return 1
def extractAudio(self, video_file, output_ext="mp3"):
try:
"""Converts video to audio directly using `ffmpeg` command
with the help of subprocess module"""
filename, ext = os.path.splitext(video_file)
subprocess.call(["ffmpeg", "-y", "-i", video_file, f"{filename}.{output_ext}"],
stdout=subprocess.DEVNULL,
stderr=subprocess.STDOUT)
return 0
except Exception as e:
x = str(e)
print('Error: ', x)
return 1
def processStream(self, debugInd, var):
try:
sep = self.sep
Curr_Path = self.Curr_Path
FileName = self.FileName
CacheL = self.CacheL
FileName_1 = self.FileName_1
audioLen = self.audioLen
audioFreq = self.audioFreq
videoFrame = self.videoFrame
stopFlag = self.stopFlag
zFlag = self.zFlag
title = self.title
print('audioFreq:')
print(str(audioFreq))
print('videoFrame:')
print(str(videoFrame))
# Construct the source for Video & Temporary Audio
videoFile = Curr_Path + sep + 'Video' + sep + FileName
audioFile = Curr_Path + sep + 'Video' + sep + FileName_1
# Load the Aruco dictionary and grab the Aruco parameters
print("[INFO] initializing marker detector…")
arucoDict = cv2.aruco.Dictionary_get(cv2.aruco.DICT_ARUCO_ORIGINAL)
arucoParams = cv2.aruco.DetectorParameters_create()
# Initialize the video file stream
print("[INFO] accessing video stream…")
vf = cv2.VideoCapture(videoFile)
x = self.extractAudio(videoFile)
if x == 0:
print('Successfully Audio extracted from the source file!')
else:
print('Failed to extract the source audio!')
# Initialize a queue to maintain the next frame from the video stream
Q = deque(maxlen=128)
# We need to have a frame in our queue to start our augmented reality
# pipeline, so read the next frame from our video file source and add
# it to our queue
(grabbed, source) = vf.read()
Q.appendleft(source)
# Initialize the video stream and allow the camera sensor to warm up
print("[INFO] starting video stream…")
vs = VideoStream(src=0).start()
time.sleep(2.0)
flg = 0
t = threading.Thread(target=self.playAudio, args=(audioFile, audioLen, audioFreq, stopFlag,))
t.daemon = True
try:
# Loop over the frames from the video stream
while len(Q) > 0:
try:
# Grab the frame from our video stream and resize it
frame = vs.read()
frame = imutils.resize(frame, width=1020)
# Attempt to find the ArUCo markers in the frame, and provided
# they are found, take the current source image and warp it onto
# input frame using our augmented reality technique
warped = x1.getWarpImages(
frame, source,
cornerIDs=(923, 1001, 241, 1007),
arucoDict=arucoDict,
arucoParams=arucoParams,
zoomFlag=zFlag,
useCache=CacheL > 0)
# If the warped frame is not None, then we know (1) we found the
# four ArUCo markers and (2) the perspective warp was successfully
# applied
if warped is not None:
# Set the frame to the output augment reality frame and then
# grab the next video file frame from our queue
frame = warped
source = Q.popleft()
if flg == 0:
t.start()
flg = flg + 1
# For speed/efficiency, we can use a queue to keep the next video
# frame queue ready for us — the trick is to ensure the queue is
# always (or nearly full)
if len(Q) != Q.maxlen:
# Read the next frame from the video file stream
(grabbed, nextFrame) = vf.read()
# If the frame was read (meaning we are not at the end of the
# video file stream), add the frame to our queue
if grabbed:
Q.append(nextFrame)
# Show the output frame
cv2.imshow(title, frame)
time.sleep(videoFrame)
# If the `q` key was pressed, break from the loop
if cv2.waitKey(2) & 0xFF == ord('q'):
stopFlag = True
break
except BreakLoop:
raise BreakLoop
except Exception as e:
pass
if (len(Q) == Q.maxlen):
time.sleep(2)
break
except BreakLoop as s:
print('Processed completed!')
# Performing cleanup at the end
cv2.destroyAllWindows()
vs.stop()
except Exception as e:
x = str(e)
print(x)
# Performing cleanup at the end
cv2.destroyAllWindows()
vs.stop()
return 0
except Exception as e:
x = str(e)
print('Error:', x)
return 1

Please find the key snippet from the above script –

def playAudio(self, audioFile, audioLen, freq, stopFlag=False):
  try:
    pygame.mixer.init()
    pygame.init()
    pygame.mixer.music.load(audioFile)

    pygame.mixer.music.set_volume(10)

    val = int(audioLen)
    i = 0

    while i < val:
      pygame.mixer.music.play(loops=0, start=float(i))
      time.sleep(freq)

      i = i + 1

      if (i >= val):
        raise BreakLoop

      if (stopFlag==True):
        raise BreakLoop

    return 0
  except BreakLoop as s:
    return 0
  except Exception as e:
    x = str(e)
    print(x)

    return 1

The above function will initiate the pygame library to run the sound of the video file that has been extracted as part of a separate process.

def extractAudio(self, video_file, output_ext="mp3"):
    try:
        """Converts video to audio directly using `ffmpeg` command
        with the help of subprocess module"""
        filename, ext = os.path.splitext(video_file)
        subprocess.call(["ffmpeg", "-y", "-i", video_file, f"{filename}.{output_ext}"],
                        stdout=subprocess.DEVNULL,
                        stderr=subprocess.STDOUT)

        return 0
    except Exception as e:
        x = str(e)
        print('Error: ', x)

        return 1

The above function temporarily extracts the audio file from the source trailer video.

# Initialize the video file stream
print("[INFO] accessing video stream...")
vf = cv2.VideoCapture(videoFile)

x = self.extractAudio(videoFile)

if x == 0:
    print('Successfully Audio extracted from the source file!')
else:
    print('Failed to extract the source audio!')

# Initialize a queue to maintain the next frame from the video stream
Q = deque(maxlen=128)

# We need to have a frame in our queue to start our augmented reality
# pipeline, so read the next frame from our video file source and add
# it to our queue
(grabbed, source) = vf.read()
Q.appendleft(source)

# Initialize the video stream and allow the camera sensor to warm up
print("[INFO] starting video stream...")
vs = VideoStream(src=0).start()

time.sleep(2.0)
flg = 0

The above snippets read the frames from the video file after invoking the audio extraction. Then, it uses a Queue method to store all the video frames for better performance. And finally, it starts consuming the standard streaming video from the WebCAM to augment the trailer video on top of it.

t = threading.Thread(target=self.playAudio, args=(audioFile, audioLen, audioFreq, stopFlag,))
t.daemon = True

Now, the application has instantiated an orphan thread to spin off the audio play function. The reason is to void the performance & video frame frequency impact on top of it.

while len(Q) > 0:
  try:
    # Grab the frame from our video stream and resize it
    frame = vs.read()
    frame = imutils.resize(frame, width=1020)

    # Attempt to find the ArUCo markers in the frame, and provided
    # they are found, take the current source image and warp it onto
    # input frame using our augmented reality technique
    warped = x1.getWarpImages(
      frame, source,
      cornerIDs=(923, 1001, 241, 1007),
      arucoDict=arucoDict,
      arucoParams=arucoParams,
      zoomFlag=zFlag,
      useCache=CacheL > 0)

    # If the warped frame is not None, then we know (1) we found the
    # four ArUCo markers and (2) the perspective warp was successfully
    # applied
    if warped is not None:
      # Set the frame to the output augment reality frame and then
      # grab the next video file frame from our queue
      frame = warped
      source = Q.popleft()

      if flg == 0:

        t.start()
        flg = flg + 1

    # For speed/efficiency, we can use a queue to keep the next video
    # frame queue ready for us -- the trick is to ensure the queue is
    # always (or nearly full)
    if len(Q) != Q.maxlen:
      # Read the next frame from the video file stream
      (grabbed, nextFrame) = vf.read()

      # If the frame was read (meaning we are not at the end of the
      # video file stream), add the frame to our queue
      if grabbed:
        Q.append(nextFrame)

    # Show the output frame
    cv2.imshow(title, frame)
    time.sleep(videoFrame)

    # If the `q` key was pressed, break from the loop
    if cv2.waitKey(2) & 0xFF == ord('q'):
      stopFlag = True
      break

  except BreakLoop:
    raise BreakLoop
  except Exception as e:
    pass

  if (len(Q) == Q.maxlen):
    time.sleep(2)
    break

The final segment will call the getWarpImages function to get the Augmented image on top of the video. It also checks for the upcoming frames & whether the source video is finished or not. In case of the end, the application will initiate a break method to come out from the infinite WebCAM read. Also, there is a provision for manual exit by pressing the ‘Q’ from the MacBook keyboard.

# Performing cleanup at the end
cv2.destroyAllWindows()
vs.stop()

It is always advisable to close your camera & remove any temporarily available windows that are still left once the application finishes the process.

  • augmentedMovieTrailer.py (Main calling script)


#####################################################
#### Written By: SATYAKI DE ####
#### Written On: 22-Jun-2022 ####
#### Modified On 25-Jun-2022 ####
#### ####
#### Objective: This is the main calling ####
#### python script that will invoke the ####
#### clsEmbedVideoWithStream class to initiate ####
#### the augmented reality in real-time ####
#### & display a trailer on top of any surface ####
#### via Web-CAM. ####
#####################################################
# We keep the setup code in a different class as shown below.
import clsEmbedVideoWithStream as evws
from clsConfig import clsConfig as cf
import datetime
import logging
###############################################
### Global Section ###
###############################################
# Instantiating all the main class
x1 = evws.clsEmbedVideoWithStream()
###############################################
### End of Global Section ###
###############################################
def main():
try:
# Other useful variables
debugInd = 'Y'
var = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
var1 = datetime.datetime.now()
print('Start Time: ', str(var))
# End of useful variables
# Initiating Log Class
general_log_path = str(cf.conf['LOG_PATH'])
# Enabling Logging Info
logging.basicConfig(filename=general_log_path + 'augmentedMovieTrailer.log', level=logging.INFO)
print('Started augmenting videos!')
# Execute all the pass
r1 = x1.processStream(debugInd, var)
if (r1 == 0):
print('Successfully identified human emotions!')
else:
print('Failed to identify the human emotions!')
var2 = datetime.datetime.now()
c = var2 var1
minutes = c.total_seconds() / 60
print('Total difference in minutes: ', str(minutes))
print('End Time: ', str(var1))
except Exception as e:
x = str(e)
print('Error: ', x)
if __name__ == "__main__":
main()

The above script will initially instantiate the main calling class & then invoke the processStream function to create the Augmented Reality.


FOLDER STRUCTURE:

Here is the folder structure that contains all the files & directories in MAC O/S –

Directory Structure

You will get the complete codebase in the following Github link.

If you want to know more about this legendary director & his famous work, please visit the following link.

I’ll bring some more exciting topic in the coming days from the Python verse. Please share & subscribe my post & let me know your feedback.

Till then, Happy Avenging! 🙂

Note: All the data & scenario posted here are representational data & scenarios & available over the internet & for educational purpose only. Some of the images (except my photo) that we’ve used are available over the net. We don’t claim the ownership of these images. There is an always room for improvement & especially the prediction quality.

Detecting real-time human emotions using Open-CV, DeepFace & Python

Hi Guys,

Today, I’ll be using another exciting installment of Computer Vision. Our focus will be on getting a sense of human emotions. Let me explain. This post will demonstrate how to read/detect human emotions by analyzing computer vision videos. We will be using part of a Bengali Movie called “Ganashatru (An enemy of the people)” entirely for educational purposes & also as a tribute to the great legendary director late Satyajit Roy. To know more about him, please click the following link.

Why don’t we see the demo first before jumping into the technical details?

Demo

Architecture:

Let us understand the architecture –

Process Flow

From the above diagram, one can see that the application, which uses both the Open-CV & DeepFace, analyzes individual frames from the source. Then predicts the emotions & adds the label in the target B&W frames. Finally, it creates another video by correctly mixing the source audio.

Python Packages:

Following are the python packages that are necessary to develop this brilliant use case –

pip install deepface
pip install opencv-python
pip install ffpyplayer

CODE:

Let us now understand the code. For this use case, we will only discuss three python scripts. However, we need more than these three. However, we have already discussed them in some of the early posts. Hence, we will skip them here.

  • clsConfig.py (This script will play the video along with audio in sync.)


################################################
#### Written By: SATYAKI DE ####
#### Written On: 15-May-2020 ####
#### Modified On: 22-Apr-2022 ####
#### ####
#### Objective: This script is a config ####
#### file, contains all the keys for ####
#### Machine-Learning & streaming dashboard.####
#### ####
################################################
import os
import platform as pl
class clsConfig(object):
Curr_Path = os.path.dirname(os.path.realpath(__file__))
os_det = pl.system()
if os_det == "Windows":
sep = '\\'
else:
sep = '/'
conf = {
'APP_ID': 1,
'ARCH_DIR': Curr_Path + sep + 'arch' + sep,
'PROFILE_PATH': Curr_Path + sep + 'profile' + sep,
'LOG_PATH': Curr_Path + sep + 'log' + sep,
'REPORT_PATH': Curr_Path + sep + 'report',
'FILE_NAME': 'GonoshotruClimax',
'SRC_PATH': Curr_Path + sep + 'data' + sep,
'FINAL_PATH': Curr_Path + sep + 'Target' + sep,
'APP_DESC_1': 'Video Emotion Capture!',
'DEBUG_IND': 'N',
'INIT_PATH': Curr_Path,
'SUBDIR': 'data',
'SEP': sep,
'VIDEO_FILE_EXTN': '.mp4',
'AUDIO_FILE_EXTN': '.mp3',
'IMAGE_FILE_EXTN': '.jpg',
'TITLE': "Gonoshotru – Emotional Analysis"
}

view raw

clsConfig.py

hosted with ❤ by GitHub

All the above inputs are generic & used as normal parameters.

  • clsFaceEmotionDetect.py (This python class will track the human emotions after splitting the audio from the video & put that label on top of the video frame.)


##################################################
#### Written By: SATYAKI DE ####
#### Written On: 17-Apr-2022 ####
#### Modified On 20-Apr-2022 ####
#### ####
#### Objective: This python class will ####
#### track the human emotions after splitting ####
#### the audio from the video & put that ####
#### label on top of the video frame. ####
#### ####
##################################################
from imutils.video import FileVideoStream
from imutils.video import FPS
import numpy as np
import imutils
import time
import cv2
from clsConfig import clsConfig as cf
from deepface import DeepFace
import clsL as cl
import subprocess
import sys
import os
# Initiating Log class
l = cl.clsL()
class clsFaceEmotionDetect:
def __init__(self):
self.sep = str(cf.conf['SEP'])
self.Curr_Path = str(cf.conf['INIT_PATH'])
self.FileName = str(cf.conf['FILE_NAME'])
self.VideoFileExtn = str(cf.conf['VIDEO_FILE_EXTN'])
self.ImageFileExtn = str(cf.conf['IMAGE_FILE_EXTN'])
def convert_video_to_audio_ffmpeg(self, video_file, output_ext="mp3"):
try:
"""Converts video to audio directly using `ffmpeg` command
with the help of subprocess module"""
filename, ext = os.path.splitext(video_file)
subprocess.call(["ffmpeg", "-y", "-i", video_file, f"{filename}.{output_ext}"],
stdout=subprocess.DEVNULL,
stderr=subprocess.STDOUT)
return 0
except Exception as e:
x = str(e)
print('Error: ', x)
return 1
def readEmotion(self, debugInd, var):
try:
sep = self.sep
Curr_Path = self.Curr_Path
FileName = self.FileName
VideoFileExtn = self.VideoFileExtn
ImageFileExtn = self.ImageFileExtn
font = cv2.FONT_HERSHEY_SIMPLEX
# Load Video
videoFile = Curr_Path + sep + 'Video' + sep + FileName + VideoFileExtn
temp_path = Curr_Path + sep + 'Temp' + sep
# Extracting the audio from the source video
x = self.convert_video_to_audio_ffmpeg(videoFile)
if x == 0:
print('Successfully Audio extracted from the source file!')
else:
print('Failed to extract the source audio!')
# Loading the haarcascade xml class
faceCascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
# start the file video stream thread and allow the buffer to
# start to fill
print("[INFO] Starting video file thread…")
fvs = FileVideoStream(videoFile).start()
time.sleep(1.0)
cnt = 0
# start the FPS timer
fps = FPS().start()
try:
# loop over frames from the video file stream
while fvs.more():
cnt += 1
# grab the frame from the threaded video file stream, resize
# it, and convert it to grayscale (while still retaining 3
# channels)
try:
frame = fvs.read()
except Exception as e:
x = str(e)
print('Error: ', x)
frame = imutils.resize(frame, width=720)
cv2.imshow("Gonoshotru – Source", frame)
# Enforce Detection to False will continue the sequence even when there is no face
result = DeepFace.analyze(frame, enforce_detection=False, actions = ['emotion'])
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
frame = np.dstack([frame, frame, frame])
faces = faceCascade.detectMultiScale(image=frame, scaleFactor=1.1, minNeighbors=4, minSize=(80,80), flags=cv2.CASCADE_SCALE_IMAGE)
# Draw a rectangle around the face
for (x, y, w, h) in faces:
cv2.rectangle(frame, (x, y), (x + w, y + h), (0,255,0), 2)
# Use puttext method for inserting live emotion on video
cv2.putText(frame, result['dominant_emotion'], (50,390), font, 3, (0,0,255), 2, cv2.LINE_4)
# display the size of the queue on the frame
#cv2.putText(frame, "Queue Size: {}".format(fvs.Q.qsize()), (10, 30), font, 0.6, (0, 255, 0), 2)
cv2.imwrite(temp_path+'frame-' + str(cnt) + ImageFileExtn, frame)
# show the frame and update the FPS counter
cv2.imshow("Gonoshotru – Emotional Analysis", frame)
fps.update()
if cv2.waitKey(2) & 0xFF == ord('q'):
break
except Exception as e:
x = str(e)
print('Error: ', x)
print('No more frame exists!')
# stop the timer and display FPS information
fps.stop()
print("[INFO] Elasped Time: {:.2f}".format(fps.elapsed()))
print("[INFO] Approx. FPS: {:.2f}".format(fps.fps()))
# do a bit of cleanup
cv2.destroyAllWindows()
fvs.stop()
return 0
except Exception as e:
x = str(e)
print('Error: ', x)
return 1

Key snippets from the above scripts –

def convert_video_to_audio_ffmpeg(self, video_file, output_ext="mp3"):
    try:
        """Converts video to audio directly using `ffmpeg` command
        with the help of subprocess module"""
        filename, ext = os.path.splitext(video_file)
        subprocess.call(["ffmpeg", "-y", "-i", video_file, f"{filename}.{output_ext}"],
                        stdout=subprocess.DEVNULL,
                        stderr=subprocess.STDOUT)

        return 0
    except Exception as e:
        x = str(e)
        print('Error: ', x)

        return 1

The above snippet represents an Audio extraction function that will extract the audio from the source file & store it in the specified directory.

# Loading the haarcascade xml class
faceCascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')

Now, Loading is one of the best classes for face detection, which our applications require.

fvs = FileVideoStream(videoFile).start()

Using FileVideoStream will enable our application to process the video faster than cv2.VideoCapture() method.

# start the FPS timer
fps = FPS().start()

The application then invokes the FPS.Start() that will initiate the FPS timer.

# loop over frames from the video file stream
while fvs.more():

The application will check using fvs.more() to find the EOF of the video file. Until then, it will try to read individual frames.

try:
    frame = fvs.read()
except Exception as e:
    x = str(e)
    print('Error: ', x)

The application will read individual frames. In case of any issue, it will capture the correct error without terminating the main program at the beginning. This exception strategy is beneficial when there is no longer any frame to read & yet due to the end frame issue, the entire application throws an error.

frame = imutils.resize(frame, width=720)
cv2.imshow("Gonoshotru - Source", frame)

At this point, the application is resizing the frame for better resolution & performance. Furthermore, identify this video feed as a source.

# Enforce Detection to False will continue the sequence even when there is no face
result = DeepFace.analyze(frame, enforce_detection=False, actions = ['emotion'])

Finally, the application has used the deepface machine-learning API to analyze the subject face & trying to predict its emotions.

frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
frame = np.dstack([frame, frame, frame])

faces = faceCascade.detectMultiScale(image=frame, scaleFactor=1.1, minNeighbors=4, minSize=(80,80), flags=cv2.CASCADE_SCALE_IMAGE)

detectMultiScale function can use to detect the faces. This function will return a rectangle with coordinates (x, y, w, h) around the detected face.

It takes three common arguments — the input image, scaleFactor, and minNeighbours.

scaleFactor specifies how much the image size reduces with each scale. There may be more faces near the camera in a group photo than others. Naturally, such faces would appear more prominent than the ones behind. This factor compensates for that.

minNeighbours specifies how many neighbors each candidate rectangle should have to retain. One may have to tweak these values to get the best results. This parameter specifies the number of neighbors a rectangle should have to be called a face.

# Draw a rectangle around the face
for (x, y, w, h) in faces:
    cv2.rectangle(frame, (x, y), (x + w, y + h), (0,255,0), 2)

As discussed above, the application is now calculating the square’s boundary after receiving the values of x, y, w, & h.

# Use puttext method for inserting live emotion on video
cv2.putText(frame, result['dominant_emotion'], (50,390), font, 3, (0,0,255), 2, cv2.LINE_4)

Finally, capture the dominant emotion from the deepface API & post it on top of the target video.

# display the size of the queue on the frame
cv2.imwrite(temp_path+'frame-' + str(cnt) + ImageFileExtn, frame)

# show the frame and update the FPS counter
cv2.imshow("Gonoshotru - Emotional Analysis", frame)
fps.update()

Also, writing individual frames into a temporary folder, where later they will be consumed & mixed with the source audio.

if cv2.waitKey(2) & 0xFF == ord('q'):
    break

At any given point, if the user wants to quit, the above snippet will allow them by simply pressing either the escape-button or ‘q’-button from the keyboard.

  • clsVideoPlay.py (This script will play the video along with audio in sync.)


###############################################
#### Updated By: SATYAKI DE ####
#### Updated On: 17-Apr-2022 ####
#### ####
#### Objective: This script will play the ####
#### video along with audio in sync. ####
#### ####
###############################################
import os
import platform as pl
import cv2
import numpy as np
import glob
import re
import ffmpeg
import time
from clsConfig import clsConfig as cf
from ffpyplayer.player import MediaPlayer
import logging
os_det = pl.system()
if os_det == "Windows":
sep = '\\'
else:
sep = '/'
class clsVideoPlay:
def __init__(self):
self.fileNmFin = str(cf.conf['FILE_NAME'])
self.final_path = str(cf.conf['FINAL_PATH'])
self.title = str(cf.conf['TITLE'])
self.VideoFileExtn = str(cf.conf['VIDEO_FILE_EXTN'])
def videoP(self, file):
try:
cap = cv2.VideoCapture(file)
player = MediaPlayer(file)
start_time = time.time()
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
_, val = player.get_frame(show=False)
if val == 'eof':
break
cv2.imshow(file, frame)
elapsed = (time.time() start_time) * 1000 # msec
play_time = int(cap.get(cv2.CAP_PROP_POS_MSEC))
sleep = max(1, int(play_time elapsed))
if cv2.waitKey(sleep) & 0xFF == ord("q"):
break
player.close_player()
cap.release()
cv2.destroyAllWindows()
return 0
except Exception as e:
x = str(e)
print('Error: ', x)
return 1
def stream(self, dInd, var):
try:
VideoFileExtn = self.VideoFileExtn
fileNmFin = self.fileNmFin + VideoFileExtn
final_path = self.final_path
title = self.title
FullFileName = final_path + fileNmFin
ret = self.videoP(FullFileName)
if ret == 0:
print('Successfully Played the Video!')
return 0
else:
return 1
except Exception as e:
x = str(e)
print('Error: ', x)
return 1

view raw

clsVideoPlay.py

hosted with ❤ by GitHub

Let us explore the key snippet –

cap = cv2.VideoCapture(file)
player = MediaPlayer(file)

In the above snippet, the application first reads the video & at the same time, it will create an instance of the MediaPlayer.

play_time = int(cap.get(cv2.CAP_PROP_POS_MSEC))

The application uses cv2.CAP_PROP_POS_MSEC to synchronize video and audio.

  • peopleEmotionRead.py (This is the main calling python script that will invoke the class to initiate the model to read the real-time human emotions from video.)


##################################################
#### Written By: SATYAKI DE ####
#### Written On: 17-Jan-2022 ####
#### Modified On 20-Apr-2022 ####
#### ####
#### Objective: This is the main calling ####
#### python script that will invoke the ####
#### clsFaceEmotionDetect class to initiate ####
#### the model to read the real-time ####
#### human emotions from video or even from ####
#### Web-CAM & predict it continuously. ####
##################################################
# We keep the setup code in a different class as shown below.
import clsFaceEmotionDetect as fed
import clsFrame2Video as fv
import clsVideoPlay as vp
from clsConfig import clsConfig as cf
import datetime
import logging
###############################################
### Global Section ###
###############################################
# Instantiating all the three classes
x1 = fed.clsFaceEmotionDetect()
x2 = fv.clsFrame2Video()
x3 = vp.clsVideoPlay()
###############################################
### End of Global Section ###
###############################################
def main():
try:
# Other useful variables
debugInd = 'Y'
var = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
var1 = datetime.datetime.now()
print('Start Time: ', str(var))
# End of useful variables
# Initiating Log Class
general_log_path = str(cf.conf['LOG_PATH'])
# Enabling Logging Info
logging.basicConfig(filename=general_log_path + 'restoreVideo.log', level=logging.INFO)
print('Started Capturing Real-Time Human Emotions!')
# Execute all the pass
r1 = x1.readEmotion(debugInd, var)
r2 = x2.convert2Vid(debugInd, var)
r3 = x3.stream(debugInd, var)
if ((r1 == 0) and (r2 == 0) and (r3 == 0)):
print('Successfully identified human emotions!')
else:
print('Failed to identify the human emotions!')
var2 = datetime.datetime.now()
c = var2 var1
minutes = c.total_seconds() / 60
print('Total difference in minutes: ', str(minutes))
print('End Time: ', str(var1))
except Exception as e:
x = str(e)
print('Error: ', x)
if __name__ == "__main__":
main()

The key-snippet from the above script are as follows –

# Instantiating all the three classes

x1 = fed.clsFaceEmotionDetect()
x2 = fv.clsFrame2Video()
x3 = vp.clsVideoPlay()

As one can see from the above snippet, all the major classes are instantiated & loaded into the memory.

# Execute all the pass
r1 = x1.readEmotion(debugInd, var)
r2 = x2.convert2Vid(debugInd, var)
r3 = x3.stream(debugInd, var)

All the responses are captured into the corresponding variables, which later check for success status.


Let us capture & compare the emotions in a screenshot for better understanding –

Emotion Analysis

So, one can see that most of the frames from the video & above-posted frame correctly identify the human emotions.


FOLDER STRUCTURE:

Here is the folder structure that contains all the files & directories in MAC O/S –

Directory

So, we’ve done it.

You will get the complete codebase in the following Github link.

If you want to know more about this legendary director & his famous work, please visit the following link.

I’ll bring some more exciting topic in the coming days from the Python verse. Please share & subscribe my post & let me know your feedback.

Till then, Happy Avenging! 😀

Note: All the data & scenario posted here are representational data & scenarios & available over the internet & for educational purpose only. Some of the images (except my photo) that we’ve used are available over the net. We don’t claim the ownership of these images. There is an always room for improvement & especially the prediction quality.

Real-Time Matplotlib view from a streaming data built using Python & Kivy-based iOS App

Today, I’ll be sharing one of the most exciting posts I’ve ever shared. This post is rare as you cannot find the most relevant working solution easily over the net.

So, what are we talking about here? We’re going to build a Python-based iOS App using the Kivy framework. You get plenty of videos & documents on this as well. However, nowhere you’ll find the capability that I’m about to disclose. We’ll consume live IoT streaming data from a dummy application & then plot them in a MatplotLib dashboard inside the mobile App. And that’s where this post is seriously different from the rest of the available white papers.


But, before we dig into more details, let us see a quick demo of our iOS App.

Demo:

Demo

Isn’t it exciting? Great! Now, let’s dig into the details.


Let’s understand the architecture as to how we want to proceed with the solution here.

Architecture:

Broad-level design

The above diagram shows that the Kive-based iOS application that will consume streaming data from the Ably queue. The initial dummy IoT application will push the real-time events to the same Ably queue.

So, now we understand the architecture. Fantastic!

Let’s deep dive into the code that we specifically built for this use case.


Code:

  1. IoTDataGen.py (Publishing Streaming data to Ably channels & captured IoT events from the simulator & publish them in Dashboard through measured KPIs.)


##############################################
#### Updated By: SATYAKI DE ####
#### Updated On: 12-Nov-2021 ####
#### ####
#### Objective: Publishing Streaming data ####
#### to Ably channels & captured IoT ####
#### events from the simulator & publish ####
#### them in Dashboard through measured ####
#### KPIs. ####
#### ####
##############################################
import random
import time
import json
import clsPublishStream as cps
import datetime
from clsConfig import clsConfig as cf
import logging
# Invoking the IoT Device Generator.
def main():
###############################################
### Global Section ###
###############################################
# Initiating Ably class to push events
x1 = cps.clsPublishStream()
###############################################
### End of Global Section ###
###############################################
# Initiating Log Class
general_log_path = str(cf.conf['LOG_PATH'])
msgSize = int(cf.conf['limRec'])
# Enabling Logging Info
logging.basicConfig(filename=general_log_path + 'IoTDevice.log', level=logging.INFO)
# Other useful variables
cnt = 1
idx = 0
debugInd = 'Y'
x_value = 0
total_1 = 100
total_2 = 100
var = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
# End of usefull variables
while True:
srcJson = {
"x_value": x_value,
"total_1": total_1,
"total_2": total_2
}
x_value += 1
total_1 = total_1 + random.randint(6, 8)
total_2 = total_2 + random.randint(5, 6)
tmpJson = str(srcJson)
if cnt == 1:
srcJsonMast = '{' + '"' + str(idx) + '":'+ tmpJson
elif cnt == msgSize:
srcJsonMast = srcJsonMast + '}'
print('JSON: ')
print(str(srcJsonMast))
# Pushing both the Historical Confirmed Cases
retVal_1 = x1.pushEvents(srcJsonMast, debugInd, var)
if retVal_1 == 0:
print('Successfully IoT event pushed!')
else:
print('Failed to push IoT events!')
srcJsonMast = ''
tmpJson = ''
cnt = 0
idx = 1
srcJson = {}
retVal_1 = 0
else:
srcJsonMast = srcJsonMast + ',' + '"' + str(idx) + '":'+ tmpJson
cnt += 1
idx += 1
time.sleep(1)
if __name__ == "__main__":
main()

view raw

IoTDataGen.py

hosted with ❤ by GitHub

Let’s explore the key snippets from the above script.

# Initiating Ably class to push events
x1 = cps.clsPublishStream()

The I-OS App is calling the main class to publish the JSON events to Ably Queue.

if cnt == 1:
    srcJsonMast = '{' + '"' + str(idx) + '":'+ tmpJson
elif cnt == msgSize:
    srcJsonMast = srcJsonMast + '}'
    print('JSON: ')
    print(str(srcJsonMast))

    # Pushing both the Historical Confirmed Cases
    retVal_1 = x1.pushEvents(srcJsonMast, debugInd, var)

    if retVal_1 == 0:
        print('Successfully IoT event pushed!')
    else:
        print('Failed to push IoT events!')

    srcJsonMast = ''
    tmpJson = ''
    cnt = 0
    idx = -1
    srcJson = {}
    retVal_1 = 0
else:
    srcJsonMast = srcJsonMast + ',' + '"' + str(idx) + '":'+ tmpJson

In the above snippet, we’re forming the payload dynamically & then calling the “pushEvents” to push all the random generated IoT mock-events to the Ably queue.

2. custom.kv (Publishing Streaming data to Ably channels & captured IoT events from the simulator & publish them in Dashboard through measured KPIs.)


###############################################################
#### ####
#### Written By: Satyaki De ####
#### Written Date: 12-Nov-2021 ####
#### ####
#### Objective: This Kivy design file contains all the ####
#### graphical interface of our I-OS App. This including ####
#### the functionalities of buttons. ####
#### ####
#### Note: If you think this file is not proeprly read by ####
#### the program, then remove this entire comment block & ####
#### then run the application. It should work. ####
###############################################################
MainInterface:
<MainInterface>:
ScreenManager:
id: sm
size: root.width, root.height
Screen:
name: "background_1"
Image:
source: "Background/Background_1.png"
allow_stretch: True
keep_ratio: True
size_hint_y: None
size_hint_x: None
width: self.parent.width
height: self.parent.width/self.image_ratio
FloatLayout:
orientation: 'vertical'
Label:
text: "This is an application, which will consume the live streaming data inside a Kivy-based IOS-App by using Matplotlib to capture the KPIs."
text_size: self.width + 350, None
height: self.texture_size[1]
halign: "left"
valign: "bottom"
pos_hint: {'center_x':2.9,'center_y':6.5}
Image:
id: homesc
pos_hint: {'right':6, 'top':5.4}
size_hint: None, None
size: 560, 485
source: "Background/FP.jpeg"
Screen:
name: "background_2"
Image:
source: "Background/Background_2.png"
allow_stretch: True
keep_ratio: True
size_hint_y: None
size_hint_x: None
width: self.parent.width
height: self.parent.width/self.image_ratio
FloatLayout:
Label:
text: "Please find the realtime IoT-device Live Statistics:"
text_size: self.width + 430, None
height: self.texture_size[1]
halign: "left"
valign: "top"
pos_hint: {'center_x':3.0,'center_y':7.0}
Label:
text: "DC to Servo Min Ratio:"
text_size: self.width + 430, None
height: self.texture_size[1]
halign: "left"
valign: "top"
pos_hint: {'center_x':3.0,'center_y':6.2}
Label:
id: dynMin
text: "100"
text_size: self.width + 430, None
height: self.texture_size[1]
halign: "left"
valign: "top"
pos_hint: {'center_x':6.2,'center_y':6.2}
Label:
text: "DC Motor:"
text_size: self.width + 430, None
height: self.texture_size[1]
halign: "left"
valign: "top"
pos_hint: {'center_x':6.8,'center_y':5.4}
Label:
text: "(MAX)"
text_size: self.width + 430, None
height: self.texture_size[1]
halign: "left"
valign: "top"
pos_hint: {'center_x':6.8,'center_y':5.0}
Label:
id: dynDC
text: "100"
text_size: self.width + 430, None
height: self.texture_size[1]
halign: "left"
valign: "top"
pos_hint: {'center_x':6.8,'center_y':4.6}
Label:
text: " ——- Vs ——- "
text_size: self.width + 430, None
height: self.texture_size[1]
halign: "left"
valign: "top"
pos_hint: {'center_x':6.8,'center_y':4.0}
Label:
text: "Servo Motor:"
text_size: self.width + 430, None
height: self.texture_size[1]
halign: "left"
valign: "top"
pos_hint: {'center_x':6.8,'center_y':3.4}
Label:
text: "(MAX)"
text_size: self.width + 430, None
height: self.texture_size[1]
halign: "left"
valign: "top"
pos_hint: {'center_x':6.8,'center_y':3.0}
Label:
id: dynServo
text: "100"
text_size: self.width + 430, None
height: self.texture_size[1]
halign: "left"
valign: "top"
pos_hint: {'center_x':6.8,'center_y':2.6}
FloatLayout:
id: box
size: 400, 550
pos: 200, 300
Screen:
name: "background_3"
Image:
source: "Background/Background_3.png"
allow_stretch: True
keep_ratio: True
size_hint_y: None
size_hint_x: None
width: self.parent.width
height: self.parent.width/self.image_ratio
FloatLayout:
orientation: 'vertical'
Label:
text: "Please find the live like status."
text_size: self.width + 350, None
height: self.texture_size[1]
halign: "left"
valign: "bottom"
pos_hint: {'center_x':2.6,'center_y':7.2}
Label:
id: dynVal
text: "100"
text_size: self.width + 350, None
height: self.texture_size[1]
halign: "left"
valign: "bottom"
pos_hint: {'center_x':4.1,'center_y':6.4}
Image:
id: lk_img_1
pos_hint: {'center_x':3.2, 'center_y':6.4}
size_hint: None, None
size: 460, 285
source: "Background/Likes_Btn_R.png"
Label:
text: "Want to know more about the Developer? Here is the detail ->"
text_size: self.width + 450, None
height: self.texture_size[1]
halign: "left"
valign: "bottom"
pos_hint: {'center_x':3.1,'center_y':5.5}
Label:
text: "I love to find out new technologies that is emerging as a driving force & shape our future!"
text_size: self.width + 290, None
height: self.texture_size[1]
halign: "left"
valign: "bottom"
pos_hint: {'center_x':2.3,'center_y':3.8}
Label:
text: "For more information view the website to know more on Python-Kivy along with Matplotlib Live Streaming."
text_size: self.width + 450, None
height: self.texture_size[1]
halign: "left"
valign: "bottom"
pos_hint: {'center_x':3.1,'center_y':1.9}
Image:
id: avatar
pos_hint: {'right':6.8, 'top':5.4}
size_hint: None, None
size: 460, 285
source: "Background/Me.jpeg"
Label:
text: "https://www.satyakide.com"
text_size: self.width + 350, None
height: self.texture_size[1]
halign: "left"
valign: "bottom"
pos_hint: {'center_x':3.4,'center_y':0.9}
Image:
source: "Background/Top_Bar.png"
size: 620, 175
pos: 0, root.height 535
Button:
#: set val 'Start'
size: 112.5, 75
pos: root.width/2190, root.height120
background_color: 1,1,1,0
on_press: root.pressed(self, val, sm)
on_release: root.released(self, val)
Image:
id: s_img
text: val
source: "Background/Start_Btn.png"
center_x: self.parent.center_x 260
center_y: self.parent.center_y 415
Button:
#: set val2 'Stats'
size: 112.5, 75
pos: root.width/255, root.height120
background_color: 1,1,1,0
on_press: root.pressed(self, val2, sm)
on_release: root.released(self, val2)
Image:
id: st_img
text: val2
source: "Background/Stats_Btn.png"
center_x: self.parent.center_x 250
center_y: self.parent.center_y 415
Button:
#: set val3 'Likes'
size: 112.5, 75
pos: root.width/2+75, root.height120
background_color: 1,1,1,0
on_press: root.pressed(self, val3, sm)
on_release: root.released(self, val3)
Image:
id: lk_img
text: val3
source: "Background/Likes_Btn.png"
center_x: self.parent.center_x 240
center_y: self.parent.center_y 415

view raw

custom.kv

hosted with ❤ by GitHub

To understand this, one needs to learn how to prepare a Kivy design layout using the KV-language. You can develop the same using native-python code as well. However, I wanted to explore this language & not to mention that this is the preferred way of doing a front-end GUI design in Kivy.

Like any graphical interface, one needs to understand the layouts & the widgets that you are planning to use or build. For that, please go through the following critical documentation link on Kivy Layouts. Please go through this if you are doing this for the first time.

To pinpoint the conversation, I would like to present the documentation segment from the official site in the given picture –

Official Kivy-refernce

Since we’ve used our custom buttons & top bars, the most convenient GUI layouts will be FloatLayout for our use case. By using that layout, we can conveniently position our widgets at any random place as per our needs. At the same time, one can use nested layouts by combining different types of arrangements under another.

Some of the key lines from the above scripting files will be –

Screen:
  name: "background_1"
  Image:
      source: "Background/Background_1.png"
      allow_stretch: True
      keep_ratio: True
      size_hint_y: None
      size_hint_x: None
      width: self.parent.width
      height: self.parent.width/self.image_ratio
      FloatLayout:
          orientation: 'vertical'
          Label:
              text: "This is an application, which will consume the live streaming data inside a Kivy-based IOS-App by using Matplotlib to capture the KPIs."
              text_size: self.width + 350, None
              height: self.texture_size[1]
              halign: "left"
              valign: "bottom"
              pos_hint: {'center_x':2.9,'center_y':6.5}
          Image:
              id: homesc
              pos_hint: {'right':6, 'top':5.4}
              size_hint: None, None
              size: 560, 485
              source: "Background/FP.jpeg"

Let us understand what we discussed here & try to map that with the image.

Part of GUI defined in KV file

From the above image now, you can understand how we placed the label & image into our custom positions to create a lean & clean interface.

Image:
      source: "Background/Top_Bar.png"
      size: 620, 175
      pos: 0, root.height - 535

  Button:
      #: set val 'Start'
      size: 112.5, 75
      pos: root.width/2-190, root.height-120
      background_color: 1,1,1,0
      on_press: root.pressed(self, val, sm)
      on_release: root.released(self, val)
      Image:
          id: s_img
          text: val
          source: "Background/Start_Btn.png"
          center_x: self.parent.center_x - 260
          center_y: self.parent.center_y - 415

  Button:
      #: set val2 'Stats'
      size: 112.5, 75
      pos: root.width/2-55, root.height-120
      background_color: 1,1,1,0
      on_press: root.pressed(self, val2, sm)
      on_release: root.released(self, val2)
      Image:
          id: st_img
          text: val2
          source: "Background/Stats_Btn.png"
          center_x: self.parent.center_x - 250
          center_y: self.parent.center_y - 415

  Button:
      #: set val3 'Likes'
      size: 112.5, 75
      pos: root.width/2+75, root.height-120
      background_color: 1,1,1,0
      on_press: root.pressed(self, val3, sm)
      on_release: root.released(self, val3)
      Image:
          id: lk_img
          text: val3
          source: "Background/Likes_Btn.png"
          center_x: self.parent.center_x - 240
          center_y: self.parent.center_y - 415

Let us understand the custom buttons mapped in our Apps.

So, these are custom buttons. We placed them into specific positions & sizes by mentioning the appropriate size & position coordinates & then assigned the button methods (on_press & on_release).

However, these button methods will be present inside the main python script, which we’ll discuss after this segment.

3. main.py (Consuming Streaming data from Ably channels & captured IoT events from the simulator & publish them in Kivy-based iOS App through measured KPIs.)


##############################################
#### Updated By: SATYAKI DE ####
#### Updated On: 12-Nov-2021 ####
#### ####
#### Objective: Consuming Streaming data ####
#### from Ably channels & captured IoT ####
#### events from the simulator & publish ####
#### them in Kivy-I/OS App through ####
#### measured KPIs. ####
#### ####
##############################################
from kivy.app import App
from kivy.uix.widget import Widget
from kivy.lang import Builder
from kivy.uix.boxlayout import BoxLayout
from kivy.uix.floatlayout import FloatLayout
from kivy.clock import Clock
from kivy.core.window import Window
from kivymd.app import MDApp
import datetime as dt
import datetime
from kivy.properties import StringProperty
from kivy.vector import Vector
import regex as re
import os
os.environ["KIVY_IMAGE"]="pil"
import platform as pl
import matplotlib.pyplot as plt
import pandas as p
from matplotlib.patches import Rectangle
from matplotlib import use as mpl_use
mpl_use('module://kivy.garden.matplotlib.backend_kivy')
plt.style.use('fivethirtyeight')
# Consuming data from Ably Queue
from ably import AblyRest
# Main Class to consume streaming
import clsStreamConsume as ca
# Create the instance of the Covid API Class
x1 = ca.clsStreamConsume()
var1 = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
print('*' *60)
DInd = 'Y'
Window.size = (310, 460)
Curr_Path = os.path.dirname(os.path.realpath(__file__))
os_det = pl.system()
if os_det == "Windows":
sep = '\\'
else:
sep = '/'
def getRealTimeIoT():
try:
# Let's pass this to our map section
df = x1.conStream(var1, DInd)
print('Data:')
print(str(df))
return df
except Exception as e:
x = str(e)
print(x)
df = p.DataFrame()
return df
class MainInterface(FloatLayout):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.data = getRealTimeIoT()
self.likes = 0
self.dcMotor = 0
self.servoMotor = 0
self.minRatio = 0
plt.subplots_adjust(bottom=0.19)
#self.fig, self.ax = plt.subplots(1,1, figsize=(6.5,10))
self.fig, self.ax = plt.subplots()
self.mpl_canvas = self.fig.canvas
def on_data(self, *args):
self.ax.clear()
self.data = getRealTimeIoT()
self.ids.lk_img_1.source = Curr_Path + sep + 'Background' + sep + "Likes_Btn.png"
self.likes = self.getMaxLike(self.data)
self.ids.dynVal.text = str(self.likes)
self.ids.lk_img_1.source = ''
self.ids.lk_img_1.source = Curr_Path + sep + 'Background' + sep + "Likes_Btn_R.png"
self.dcMotor = self.getMaxDCMotor(self.data)
self.ids.dynDC.text = str(self.dcMotor)
self.servoMotor = self.getMaxServoMotor(self.data)
self.ids.dynServo.text = str(self.servoMotor)
self.minRatio = self.getDc2ServoMinRatio(self.data)
self.ids.dynMin.text = str(self.minRatio)
x = self.data['x_value']
y1 = self.data['total_1']
y2 = self.data['total_2']
self.ax.plot(x, y1, label='Channel 1', linewidth=5.0)
self.ax.plot(x, y2, label='Channel 2', linewidth=5.0)
self.mpl_canvas.draw_idle()
box = self.ids.box
box.clear_widgets()
box.add_widget(self.mpl_canvas)
return self.data
def getMaxLike(self, df):
payload = df['x_value']
a1 = str(payload.agg(['max']))
max_val = int(re.search(r'\d+', a1)[0])
return max_val
def getMaxDCMotor(self, df):
payload = df['total_1']
a1 = str(payload.agg(['max']))
max_val = int(re.search(r'\d+', a1)[0])
return max_val
def getMaxServoMotor(self, df):
payload = df['total_2']
a1 = str(payload.agg(['max']))
max_val = int(re.search(r'\d+', a1)[0])
return max_val
def getMinDCMotor(self, df):
payload = df['total_1']
a1 = str(payload.agg(['min']))
min_val = int(re.search(r'\d+', a1)[0])
return min_val
def getMinServoMotor(self, df):
payload = df['total_2']
a1 = str(payload.agg(['min']))
min_val = int(re.search(r'\d+', a1)[0])
return min_val
def getDc2ServoMinRatio(self, df):
minDC = self.getMinDCMotor(df)
minServo = self.getMinServoMotor(df)
min_ratio = round(float(minDC/minServo), 5)
return min_ratio
def update(self, *args):
self.data = self.on_data(self.data)
def pressed(self, instance, inText, SM):
if str(inText).upper() == 'START':
instance.parent.ids.s_img.source = Curr_Path + sep + 'Background' + sep + "Pressed_Start_Btn.png"
print('In Pressed: ', str(instance.parent.ids.s_img.text).upper())
if ((SM.current == "background_2") or (SM.current == "background_3")):
SM.transition.direction = "right"
SM.current= "background_1"
Clock.unschedule(self.update)
self.remove_widget(self.mpl_canvas)
elif str(inText).upper() == 'STATS':
instance.parent.ids.st_img.source = Curr_Path + sep + 'Background' + sep + "Pressed_Stats_Btn.png"
print('In Pressed: ', str(instance.parent.ids.st_img.text).upper())
if (SM.current == "background_1"):
SM.transition.direction = "left"
elif (SM.current == "background_3"):
SM.transition.direction = "right"
SM.current= "background_2"
Clock.schedule_interval(self.update, 0.1)
else:
instance.parent.ids.lk_img.source = Curr_Path + sep + 'Background' + sep + "Pressed_Likes_Btn.png"
print('In Pressed: ', str(instance.parent.ids.lk_img.text).upper())
if ((SM.current == "background_1") or (SM.current == "background_2")):
SM.transition.direction = "left"
SM.current= "background_3"
Clock.schedule_interval(self.update, 0.1)
instance.parent.ids.dynVal.text = str(self.likes)
instance.parent.ids.dynDC.text = str(self.dcMotor)
instance.parent.ids.dynServo.text = str(self.servoMotor)
instance.parent.ids.dynMin.text = str(self.minRatio)
self.remove_widget(self.mpl_canvas)
def released(self, instance, inrText):
if str(inrText).upper() == 'START':
instance.parent.ids.s_img.source = Curr_Path + sep + 'Background' + sep + "Start_Btn.png"
print('Released: ', str(instance.parent.ids.s_img.text).upper())
elif str(inrText).upper() == 'STATS':
instance.parent.ids.st_img.source = Curr_Path + sep + 'Background' + sep + "Stats_Btn.png"
print('Released: ', str(instance.parent.ids.st_img.text).upper())
else:
instance.parent.ids.lk_img.source = Curr_Path + sep + 'Background' + sep + "Likes_Btn.png"
print('Released: ', str(instance.parent.ids.lk_img.text).upper())
class CustomApp(MDApp):
def build(self):
return MainInterface()
if __name__ == "__main__":
custApp = CustomApp()
custApp.run()

view raw

main.py

hosted with ❤ by GitHub

Let us explore the main script now.

def getRealTimeIoT():
    try:
        # Let's pass this to our map section
        df = x1.conStream(var1, DInd)

        print('Data:')
        print(str(df))

        return df
    except Exception as e:
        x = str(e)
        print(x)

        df = p.DataFrame()

        return df

The above function will invoke the streaming class to consume the mock IoT live events as a pandas dataframe from the Ably queue.

class MainInterface(FloatLayout):

    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self.data = getRealTimeIoT()
        self.likes = 0
        self.dcMotor = 0
        self.servoMotor = 0
        self.minRatio = 0
        plt.subplots_adjust(bottom=0.19)

        #self.fig, self.ax = plt.subplots(1,1, figsize=(6.5,10))
        self.fig, self.ax = plt.subplots()
        self.mpl_canvas = self.fig.canvas

Application is instantiating the main class & assignments of all the critical variables, including the matplotlib class.

    def pressed(self, instance, inText, SM):

        if str(inText).upper() == 'START':
            instance.parent.ids.s_img.source = Curr_Path + sep + 'Background' + sep + "Pressed_Start_Btn.png"
            print('In Pressed: ', str(instance.parent.ids.s_img.text).upper())
            if ((SM.current == "background_2") or (SM.current == "background_3")):
                SM.transition.direction = "right"
            SM.current= "background_1"
            Clock.unschedule(self.update)
            self.remove_widget(self.mpl_canvas)

We’ve taken one of the button events & captured how the application will behave once someone clicks the Start button & how it will bring all the corresponding elements of a static page. It also explained the transition type between screens.

        elif str(inText).upper() == 'STATS':

            instance.parent.ids.st_img.source = Curr_Path + sep + 'Background' + sep + "Pressed_Stats_Btn.png"
            print('In Pressed: ', str(instance.parent.ids.st_img.text).upper())
            if (SM.current == "background_1"):
                SM.transition.direction = "left"
            elif (SM.current == "background_3"):
                SM.transition.direction = "right"
            SM.current= "background_2"
            Clock.schedule_interval(self.update, 0.1)

The next screen invokes the dynamic & real-time content. So, please pay extra attention to the following line –

Clock.schedule_interval(self.update, 0.1)

This line will invoke the update function, which looks like –

    def update(self, *args):
        self.data = self.on_data(self.data)

Here is the logic for the update function, which will invoke another function named – “on_data“.

    def on_data(self, *args):
        self.ax.clear()
        self.data = getRealTimeIoT()

        self.ids.lk_img_1.source = Curr_Path + sep + 'Background' + sep + "Likes_Btn.png"
        self.likes = self.getMaxLike(self.data)
        self.ids.dynVal.text = str(self.likes)
        self.ids.lk_img_1.source = ''
        self.ids.lk_img_1.source = Curr_Path + sep + 'Background' + sep + "Likes_Btn_R.png"

        self.dcMotor = self.getMaxDCMotor(self.data)
        self.ids.dynDC.text = str(self.dcMotor)

        self.servoMotor = self.getMaxServoMotor(self.data)
        self.ids.dynServo.text = str(self.servoMotor)

        self.minRatio = self.getDc2ServoMinRatio(self.data)
        self.ids.dynMin.text = str(self.minRatio)

        x = self.data['x_value']
        y1 = self.data['total_1']
        y2 = self.data['total_2']

        self.ax.plot(x, y1, label='Channel 1', linewidth=5.0)
        self.ax.plot(x, y2, label='Channel 2', linewidth=5.0)

        self.mpl_canvas.draw_idle()

        box = self.ids.box
        box.clear_widgets()
        box.add_widget(self.mpl_canvas)

        return self.data

The above crucial line shows how we capture the live calculation & assign them into matplotlib plots & finally assign that figure canvas of matplotlib to a box widget as per our size & display the change content whenever it invokes this method.

Rests of the functions are pretty self-explanatory. So, I’m not going to discuss them.


Run:

Let’s run the app & see the output –

STEP – 1

Triggering the mock IoT App

STEP – 2

Triggering the iOS App

STEP – 3


So, we’ve done it.

You will get the complete codebase in the following Github link.

I’ll bring some more exciting topic in the coming days from the Python verse. Please share & subscribe my post & let me know your feedback.

Till then, Happy Avenging!


Note: All the data & scenario posted here are representational data & scenarios & available over the internet & for educational purpose only. Some of the images (except my photo) that we’ve used are available over the net. We don’t claim the ownership of these images. There is an always room for improvement & especially all the GUI components size & position that will be dynamic in nature by defining self.width along with some constant values.

Python-based dash framework visualizing real-time covid-19 trend.

Hi Team,

We’ll enhance our last post on Covid-19 prediction & try to capture them in a real-time dashboard, where the values in the visual display points will be affected as soon as the source data changes. In short, this is genuinely a real-time visual dashboard displaying all the graphs, trends depending upon the third-party API source data change.

However, I would like to share the run before we dig deep into this.

Demo Run

Architecture:

Let us understand the architecture for this solution –

Streaming Architecture

From the above diagram, one can see that we’re maintaining a similar approach compared to our last initiative. However, we’ve used a different framework to display the data live.

To achieve this, we’ve used a compelling python-based framework called Dash. Other than that, we’ve used Ably, Plotly & Prophet API.

If you need to know more about our last post, please visit this link.


Package Installation:

Let us understand the sample packages that require for this task.

Step – 1:

Installing Packages

Step – 2:

Installing Packages – Continue

Step – 3:

Installing Packages – Continue

Step – 4:

Installing Packages – Final

And, here is the command to install those packages –

pip install pandas
pip install plotly
pip install prophet
pip install dash
pip install pandas
pip install ably

Code:

Since this is an extension to our previous post, we’re not going to discuss other scripts, which we’ve already discussed over there. Instead, we will talk about the enhanced scripts & the new scripts that require for this use case.

1. clsConfig.py ( This native Python script contains the configuration entries. )


################################################
#### Written By: SATYAKI DE ####
#### Written On: 15-May-2020 ####
#### Modified On: 09-Sep-2021 ####
#### ####
#### Objective: This script is a config ####
#### file, contains all the keys for ####
#### Machine-Learning & streaming dashboard.####
#### ####
################################################
import os
import platform as pl
class clsConfig(object):
Curr_Path = os.path.dirname(os.path.realpath(__file__))
os_det = pl.system()
if os_det == "Windows":
sep = '\\'
else:
sep = '/'
conf = {
'APP_ID': 1,
'ARCH_DIR': Curr_Path + sep + 'arch' + sep,
'PROFILE_PATH': Curr_Path + sep + 'profile' + sep,
'LOG_PATH': Curr_Path + sep + 'log' + sep,
'REPORT_PATH': Curr_Path + sep + 'report',
'FILE_NAME': Curr_Path + sep + 'data' + sep + 'TradeIn.csv',
'SRC_PATH': Curr_Path + sep + 'data' + sep,
'APP_DESC_1': 'Dash Integration with Ably!',
'DEBUG_IND': 'N',
'INIT_PATH': Curr_Path,
'SUBDIR' : 'data',
'ABLY_ID': 'XXX2LL.93kdkiU2:Kdsldoeie737484E',
"URL":"https://corona-api.com/countries/&quot;,
"appType":"application/json",
"conType":"keep-alive",
"limRec": 10,
"CACHE":"no-cache",
"MAX_RETRY": 3,
"coList": "DE, IN, US, CA, GB, ID, BR",
"FNC": "NewConfirmed",
"TMS": "ReportedDate",
"FND": "NewDeaths",
"FinData": "Cache.csv"
}

view raw

clsConfig.py

hosted with ❤ by GitHub

A few of the new entries, which are essential to this task are -> ABLY_ID & FinData.

2. clsPublishStream.py ( This script will publish the data transformed for Covid-19 predictions from the third-party sources. )


###############################################################
#### ####
#### Written By: Satyaki De ####
#### Written Date: 26-Jul-2021 ####
#### Modified Date: 08-Sep-2021 ####
#### ####
#### Objective: This script will publish real-time ####
#### streaming data coming out from a hosted API ####
#### sources using another popular third-party service ####
#### named Ably. Ably mimics pubsub Streaming concept, ####
#### which might be extremely useful for any start-ups. ####
#### ####
###############################################################
from ably import AblyRest
import logging
import json
from random import seed
from random import random
import json
import math
import random
from clsConfig import clsConfig as cf
# Global Section
logger = logging.getLogger('ably')
logger.addHandler(logging.StreamHandler())
ably_id = str(cf.conf['ABLY_ID'])
ably = AblyRest(ably_id)
channel = ably.channels.get('sd_channel')
# End Of Global Section
class clsPublishStream:
def __init__(self):
self.fnc = cf.conf['FNC']
def pushEvents(self, srcDF, debugInd, varVa, flg):
try:
# JSON data
# This is the default data for all the identified category
# we've prepared. You can extract this dynamically. Or, By
# default you can set their base trade details.
json_data = [{'Year_Mon': '201911', 'Brazil': 0.0, 'Canada': 0.0, 'Germany': 0.0, 'India': 0.0, 'Indonesia': 0.0, 'UnitedKingdom': 0.0, 'UnitedStates': 0.0, 'Status': flg},
{'Year_Mon': '201912', 'Brazil': 0.0, 'Canada': 0.0, 'Germany': 0.0, 'India': 0.0, 'Indonesia': 0.0, 'UnitedKingdom': 0.0, 'UnitedStates': 0.0, 'Status': flg}]
jdata = json.dumps(json_data)
# Publish a message to the sd_channel channel
channel.publish('event', jdata)
# Capturing the inbound dataframe
iDF = srcDF
# Adding new selected points
covid_dict = iDF.to_dict('records')
jdata_fin = json.dumps(covid_dict)
# Publish rest of the messages to the sd_channel channel
channel.publish('event', jdata_fin)
jdata_fin = ''
return 0
except Exception as e:
x = str(e)
print(x)
logging.info(x)
return 1

We’ve already discussed this script. The only new line that appears here is –

json_data = [{'Year_Mon': '201911', 'Brazil': 0.0, 'Canada': 0.0, 'Germany': 0.0, 'India': 0.0, 'Indonesia': 0.0, 'UnitedKingdom': 0.0, 'UnitedStates': 0.0, 'Status': flg},
            {'Year_Mon': '201912', 'Brazil': 0.0, 'Canada': 0.0, 'Germany': 0.0, 'India': 0.0, 'Indonesia': 0.0, 'UnitedKingdom': 0.0, 'UnitedStates': 0.0, 'Status': flg}]

This statement is more like a dummy feed, which creates the basic structure of your graph.

3. clsStreamConsume.py ( This script will consume the stream from Ably Queue configuration entries. )


##############################################
#### Written By: SATYAKI DE ####
#### Written On: 26-Jul-2021 ####
#### Modified On 08-Sep-2021 ####
#### ####
#### Objective: Consuming Streaming data ####
#### from Ably channels published by the ####
#### callPredictCovidAnalysisRealtime.py ####
#### ####
##############################################
import json
from clsConfig import clsConfig as cf
import requests
import logging
import time
import pandas as p
import clsL as cl
from ably import AblyRest
# Initiating Log class
l = cl.clsL()
class clsStreamConsume:
def __init__(self):
self.ably_id = str(cf.conf['ABLY_ID'])
self.fileName = str(cf.conf['FinData'])
def conStream(self, varVa, debugInd):
try:
ably_id = self.ably_id
fileName = self.fileName
var = varVa
debug_ind = debugInd
# Fetching the data
client = AblyRest(ably_id)
channel = client.channels.get('sd_channel')
message_page = channel.history()
# Counter Value
cnt = 0
# Declaring Global Data-Frame
df_conv = p.DataFrame()
for i in message_page.items:
print('Last Msg: {}'.format(i.data))
json_data = json.loads(i.data)
# Converting JSON to Dataframe
df = p.json_normalize(json_data)
df.columns = df.columns.map(lambda x: x.split(".")[1])
if cnt == 0:
df_conv = df
else:
d_frames = [df_conv, df]
df_conv = p.concat(d_frames)
cnt += 1
# Resetting the Index Value
df_conv.reset_index(drop=True, inplace=True)
# This will check whether the current load is happening
# or not. Based on that, it will capture the old events
# from cache.
if df_conv.empty:
df_conv = p.read_csv(fileName, index = True)
else:
l.logr(fileName, debug_ind, df_conv, 'log')
return df_conv
except Exception as e:
x = str(e)
print(x)
logging.info(x)
# This will handle the error scenaio as well.
# Based on that, it will capture the old events
# from cache.
try:
df_conv = p.read_csv(fileName, index = True)
except:
df = p.DataFrame()
return df

We’ve already discussed this script in one of my earlier posts, which you will get here.

So, I’m not going to discuss all the steps in detail.

The only added part was to introduce some temporary local caching mechanism.

if df_conv.empty:
    df_conv = p.read_csv(fileName, index = True)
else:
    l.logr(fileName, debug_ind, df_conv, 'log')

4. callPredictCovidAnalysisRealtime.py ( Main calling script to fetch the COVID-19 data from the third-party source & then publish it to the Ably message queue after transforming the data & adding the prediction using Facebook’s prophet API. )


##############################################
#### Written By: SATYAKI DE ####
#### Written On: 26-Jul-2021 ####
#### Modified On 26-Jul-2021 ####
#### ####
#### Objective: Calling multiple API's ####
#### that including Prophet-API developed ####
#### by Facebook for future prediction of ####
#### Covid-19 situations in upcoming days ####
#### for world's major hotspots. ####
##############################################
import json
import clsCovidAPI as ca
from clsConfig import clsConfig as cf
import datetime
import logging
import clsL as cl
import math as m
import clsPublishStream as cps
import clsForecast as f
from prophet import Prophet
from prophet.plot import plot_plotly, plot_components_plotly
import matplotlib.pyplot as plt
import pandas as p
import datetime as dt
import time
# Disbling Warning
def warn(*args, **kwargs):
pass
import warnings
warnings.warn = warn
# Initiating Log class
l = cl.clsL()
# Helper Function that removes underscores
def countryDet(inputCD):
try:
countryCD = inputCD
if str(countryCD) == 'DE':
cntCD = 'Germany'
elif str(countryCD) == 'BR':
cntCD = 'Brazil'
elif str(countryCD) == 'GB':
cntCD = 'UnitedKingdom'
elif str(countryCD) == 'US':
cntCD = 'UnitedStates'
elif str(countryCD) == 'IN':
cntCD = 'India'
elif str(countryCD) == 'CA':
cntCD = 'Canada'
elif str(countryCD) == 'ID':
cntCD = 'Indonesia'
else:
cntCD = 'N/A'
return cntCD
except:
cntCD = 'N/A'
return cntCD
def lookupCountry(row):
try:
strCD = str(row['CountryCode'])
retVal = countryDet(strCD)
return retVal
except:
retVal = 'N/A'
return retVal
def adjustTrend(row):
try:
flTrend = float(row['trend'])
flTrendUpr = float(row['trend_upper'])
flTrendLwr = float(row['trend_lower'])
retVal = m.trunc((flTrend + flTrendUpr + flTrendLwr)/3)
if retVal < 0:
retVal = 0
return retVal
except:
retVal = 0
return retVal
def ceilTrend(row, colName):
try:
flTrend = str(row[colName])
if flTrend.find('.'):
if float(flTrend) > 0:
retVal = m.trunc(float(flTrend)) + 1
else:
retVal = m.trunc(float(flTrend))
else:
retVal = float(flTrend)
if retVal < 0:
retVal = 0
return retVal
except:
retVal = 0
return retVal
def plot_picture(inputDF, debug_ind, var, countryCD, stat):
try:
iDF = inputDF
# Lowercase the column names
iDF.columns = [c.lower() for c in iDF.columns]
# Determine which is Y axis
y_col = [c for c in iDF.columns if c.startswith('y')][0]
# Determine which is X axis
x_col = [c for c in iDF.columns if c.startswith('ds')][0]
# Data Conversion
iDF['y'] = iDF[y_col].astype('float')
iDF['ds'] = iDF[x_col].astype('datetime64[ns]')
# Forecast calculations
# Decreasing the changepoint_prior_scale to 0.001 to make the trend less flexible
m = Prophet(n_changepoints=20, yearly_seasonality=True, changepoint_prior_scale=0.001)
#m = Prophet(n_changepoints=20, yearly_seasonality=True, changepoint_prior_scale=0.04525)
#m = Prophet(n_changepoints=['2021-09-10'])
m.fit(iDF)
forecastDF = m.make_future_dataframe(periods=365)
forecastDF = m.predict(forecastDF)
l.logr('15.forecastDF_' + var + '_' + countryCD + '.csv', debug_ind, forecastDF, 'log')
df_M = forecastDF[['ds', 'trend', 'trend_lower', 'trend_upper']]
l.logr('16.df_M_' + var + '_' + countryCD + '.csv', debug_ind, df_M, 'log')
# Getting Full Country Name
cntCD = countryDet(countryCD)
# Draw forecast results
df_M['Country'] = cntCD
l.logr('17.df_M_C_' + var + '_' + countryCD + '.csv', debug_ind, df_M, 'log')
df_M['AdjustTrend'] = df_M.apply(lambda row: adjustTrend(row), axis=1)
l.logr('20.df_M_AdjustTrend_' + var + '_' + countryCD + '.csv', debug_ind, df_M, 'log')
return df_M
except Exception as e:
x = str(e)
print(x)
df = p.DataFrame()
return df
def countrySpecificDF(counryDF, val):
try:
countryName = val
df = counryDF
df_lkpFile = df[(df['CountryCode'] == val)]
return df_lkpFile
except:
df = p.DataFrame()
return df
def toNum(row, colName):
try:
flTrend = str(row[colName])
flTr, subpart = flTrend.split(' ')
retVal = int(flTr.replace('-',''))
return retVal
except:
retVal = 0
return retVal
def extractPredictedDF(OrigDF, MergePredictedDF, colName):
try:
iDF_1 = OrigDF
iDF_2 = MergePredictedDF
dt_format = '%Y-%m-%d'
iDF_1_max_group = iDF_1.groupby(["Country"] , as_index=False)["ReportedDate"].max()
iDF_2['ReportedDate'] = iDF_2.apply(lambda row: toNum(row, 'ds'), axis=1)
col_one_list = iDF_1_max_group['Country'].tolist()
col_two_list = iDF_1_max_group['ReportedDate'].tolist()
print('col_one_list: ', str(col_one_list))
print('col_two_list: ', str(col_two_list))
cnt_1_x = 1
cnt_1_y = 1
cnt_x = 0
df_M = p.DataFrame()
for i in col_one_list:
str_countryVal = str(i)
cnt_1_y = 1
for j in col_two_list:
intReportDate = int(str(j).strip().replace('-',''))
if cnt_1_x == cnt_1_y:
print('str_countryVal: ', str(str_countryVal))
print('intReportDate: ', str(intReportDate))
iDF_2_M = iDF_2[(iDF_2['Country'] == str_countryVal) & (iDF_2['ReportedDate'] > intReportDate)]
# Merging with the previous Country Code data
if cnt_x == 0:
df_M = iDF_2_M
else:
d_frames = [df_M, iDF_2_M]
df_M = p.concat(d_frames)
cnt_x += 1
cnt_1_y += 1
cnt_1_x += 1
df_M.drop(columns=['ReportedDate'], axis=1, inplace=True)
df_M.rename(columns={'ds':'ReportedDate'}, inplace=True)
df_M.rename(columns={'AdjustTrend':colName}, inplace=True)
return df_M
except:
df = p.DataFrame()
return df
def toPivot(inDF, colName):
try:
iDF = inDF
iDF_Piv = iDF.pivot_table(colName, ['ReportedDate'], 'Country')
iDF_Piv.reset_index( drop=False, inplace=True )
list1 = ['ReportedDate']
iDF_Arr = iDF['Country'].unique()
list2 = iDF_Arr.tolist()
listV = list1 + list2
iDF_Piv.reindex([listV], axis=1)
return iDF_Piv
except Exception as e:
x = str(e)
print(x)
df = p.DataFrame()
return df
def toAgg(inDF, var, debugInd, flg):
try:
iDF = inDF
colName = "ReportedDate"
list1 = list(iDF.columns.values)
list1.remove(colName)
list1 = ["Brazil", "Canada", "Germany", "India", "Indonesia", "UnitedKingdom", "UnitedStates"]
iDF['Year_Mon'] = iDF[colName].apply(lambda x:x.strftime('%Y%m'))
iDF.drop(columns=[colName], axis=1, inplace=True)
ColNameGrp = "Year_Mon"
print('List1 Aggregate:: ', str(list1))
print('ColNameGrp :: ', str(ColNameGrp))
iDF_T = iDF[["Year_Mon", "Brazil", "Canada", "Germany", "India", "Indonesia", "UnitedKingdom", "UnitedStates"]]
iDF_T.fillna(0, inplace = True)
print('iDF_T:: ')
print(iDF_T)
iDF_1_max_group = iDF_T.groupby(ColNameGrp, as_index=False)[list1].sum()
iDF_1_max_group['Status'] = flg
return iDF_1_max_group
except Exception as e:
x = str(e)
print(x)
df = p.DataFrame()
return df
def publishEvents(inDF1, inDF2, inDF3, inDF4, var, debugInd):
try:
# Original Covid Data from API
iDF1 = inDF1
iDF2 = inDF2
NC = 'NewConfirmed'
ND = 'NewDeaths'
iDF1_PV = toPivot(iDF1, NC)
iDF1_PV['ReportedDate'] = p.to_datetime(iDF1_PV['ReportedDate'])
l.logr('57.iDF1_PV_' + var + '.csv', debugInd, iDF1_PV, 'log')
iDF2_PV = toPivot(iDF2, ND)
iDF2_PV['ReportedDate'] = p.to_datetime(iDF2_PV['ReportedDate'])
l.logr('58.iDF2_PV_' + var + '.csv', debugInd, iDF2_PV, 'log')
# Predicted Covid Data from Facebook API
iDF3 = inDF3
iDF4 = inDF4
iDF3_PV = toPivot(iDF3, NC)
l.logr('59.iDF3_PV_' + var + '.csv', debugInd, iDF3_PV, 'log')
iDF4_PV = toPivot(iDF4, ND)
l.logr('60.iDF4_PV_' + var + '.csv', debugInd, iDF4_PV, 'log')
# Now aggregating data based on year-month only
iDF1_Agg = toAgg(iDF1_PV, var, debugInd, NC)
l.logr('61.iDF1_Agg_' + var + '.csv', debugInd, iDF1_Agg, 'log')
iDF2_Agg = toAgg(iDF2_PV, var, debugInd, ND)
l.logr('62.iDF2_Agg_' + var + '.csv', debugInd, iDF2_Agg, 'log')
iDF3_Agg = toAgg(iDF3_PV, var, debugInd, NC)
l.logr('63.iDF3_Agg_' + var + '.csv', debugInd, iDF3_Agg, 'log')
iDF4_Agg = toAgg(iDF4_PV, var, debugInd, ND)
l.logr('64.iDF4_Agg_' + var + '.csv', debugInd, iDF4_Agg, 'log')
# Initiating Ably class to push events
x1 = cps.clsPublishStream()
# Pushing both the Historical Confirmed Cases
retVal_1 = x1.pushEvents(iDF1_Agg, debugInd, var, NC)
if retVal_1 == 0:
print('Successfully historical event pushed!')
else:
print('Failed to push historical events!')
# Pushing both the Historical Death Cases
retVal_3 = x1.pushEvents(iDF2_Agg, debugInd, var, ND)
if retVal_3 == 0:
print('Successfully historical event pushed!')
else:
print('Failed to push historical events!')
time.sleep(5)
# Pushing both the New Confirmed Cases
retVal_2 = x1.pushEvents(iDF3_Agg, debugInd, var, NC)
if retVal_2 == 0:
print('Successfully predicted event pushed!')
else:
print('Failed to push predicted events!')
# Pushing both the New Death Cases
retVal_4 = x1.pushEvents(iDF4_Agg, debugInd, var, ND)
if retVal_4 == 0:
print('Successfully predicted event pushed!')
else:
print('Failed to push predicted events!')
return 0
except Exception as e:
x = str(e)
print(x)
return 1
def main():
try:
var1 = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
print('*' *60)
DInd = 'Y'
NC = 'New Confirmed'
ND = 'New Dead'
SM = 'data process Successful!'
FM = 'data process Failure!'
print("Calling the custom Package for large file splitting..")
print('Start Time: ' + str(var1))
countryList = str(cf.conf['coList']).split(',')
# Initiating Log Class
general_log_path = str(cf.conf['LOG_PATH'])
# Enabling Logging Info
logging.basicConfig(filename=general_log_path + 'CovidAPI.log', level=logging.INFO)
# Create the instance of the Covid API Class
x1 = ca.clsCovidAPI()
# Let's pass this to our map section
retDF = x1.searchQry(var1, DInd)
retVal = int(retDF.shape[0])
if retVal > 0:
print('Successfully Covid Data Extracted from the API-source.')
else:
print('Something wrong with your API-source!')
# Extracting Skeleton Data
df = retDF[['data.code', 'date', 'deaths', 'confirmed', 'recovered', 'new_confirmed', 'new_recovered', 'new_deaths', 'active']]
df.columns = ['CountryCode', 'ReportedDate', 'TotalReportedDead', 'TotalConfirmedCase', 'TotalRecovered', 'NewConfirmed', 'NewRecovered', 'NewDeaths', 'ActiveCaases']
df.dropna()
print('Returned Skeleton Data Frame: ')
print(df)
l.logr('5.df_' + var1 + '.csv', DInd, df, 'log')
# Due to source data issue, application will perform of
# avg of counts based on dates due to multiple entries
g_df = df.groupby(["CountryCode", "ReportedDate"] , as_index=False)["TotalReportedDead","TotalConfirmedCase","TotalRecovered","NewConfirmed","NewRecovered","NewDeaths","ActiveCaases"].mean()
g_df['TotalReportedDead_M'] = g_df.apply(lambda row: ceilTrend(row, 'TotalReportedDead'), axis=1)
g_df['TotalConfirmedCase_M'] = g_df.apply(lambda row: ceilTrend(row, 'TotalConfirmedCase'), axis=1)
g_df['TotalRecovered_M'] = g_df.apply(lambda row: ceilTrend(row, 'TotalRecovered'), axis=1)
g_df['NewConfirmed_M'] = g_df.apply(lambda row: ceilTrend(row, 'NewConfirmed'), axis=1)
g_df['NewRecovered_M'] = g_df.apply(lambda row: ceilTrend(row, 'NewRecovered'), axis=1)
g_df['NewDeaths_M'] = g_df.apply(lambda row: ceilTrend(row, 'NewDeaths'), axis=1)
g_df['ActiveCaases_M'] = g_df.apply(lambda row: ceilTrend(row, 'ActiveCaases'), axis=1)
# Dropping old columns
g_df.drop(columns=['TotalReportedDead', 'TotalConfirmedCase', 'TotalRecovered', 'NewConfirmed', 'NewRecovered', 'NewDeaths', 'ActiveCaases'], axis=1, inplace=True)
# Renaming the new columns to old columns
g_df.rename(columns={'TotalReportedDead_M':'TotalReportedDead'}, inplace=True)
g_df.rename(columns={'TotalConfirmedCase_M':'TotalConfirmedCase'}, inplace=True)
g_df.rename(columns={'TotalRecovered_M':'TotalRecovered'}, inplace=True)
g_df.rename(columns={'NewConfirmed_M':'NewConfirmed'}, inplace=True)
g_df.rename(columns={'NewRecovered_M':'NewRecovered'}, inplace=True)
g_df.rename(columns={'NewDeaths_M':'NewDeaths'}, inplace=True)
g_df.rename(columns={'ActiveCaases_M':'ActiveCaases'}, inplace=True)
l.logr('5.g_df_' + var1 + '.csv', DInd, g_df, 'log')
# Working with forecast
# Create the instance of the Forecast API Class
x2 = f.clsForecast()
# Fetching each country name & then get the details
cnt = 6
cnt_x = 0
cnt_y = 0
df_M_Confirmed = p.DataFrame()
df_M_Deaths = p.DataFrame()
for i in countryList:
try:
cntryIndiv = i.strip()
cntryFullName = countryDet(cntryIndiv)
print('Country Porcessing: ' + str(cntryFullName))
# Creating dataframe for each country
# Germany Main DataFrame
dfCountry = countrySpecificDF(g_df, cntryIndiv)
l.logr(str(cnt) + '.df_' + cntryIndiv + '_' + var1 + '.csv', DInd, dfCountry, 'log')
# Let's pass this to our map section
retDFGenNC = x2.forecastNewConfirmed(dfCountry, DInd, var1)
statVal = str(NC)
a1 = plot_picture(retDFGenNC, DInd, var1, cntryIndiv, statVal)
# Merging with the previous Country Code data
if cnt_x == 0:
df_M_Confirmed = a1
else:
d_frames = [df_M_Confirmed, a1]
df_M_Confirmed = p.concat(d_frames)
cnt_x += 1
retDFGenNC_D = x2.forecastNewDead(dfCountry, DInd, var1)
statVal = str(ND)
a2 = plot_picture(retDFGenNC_D, DInd, var1, cntryIndiv, statVal)
# Merging with the previous Country Code data
if cnt_y == 0:
df_M_Deaths = a2
else:
d_frames = [df_M_Deaths, a2]
df_M_Deaths = p.concat(d_frames)
cnt_y += 1
# Printing Proper message
if (a1 + a2) == 0:
oprMsg = cntryFullName + ' ' + SM
print(oprMsg)
else:
oprMsg = cntryFullName + ' ' + FM
print(oprMsg)
# Resetting the dataframe value for the next iteration
dfCountry = p.DataFrame()
cntryIndiv = ''
oprMsg = ''
cntryFullName = ''
a1 = 0
a2 = 0
statVal = ''
cnt += 1
except Exception as e:
x = str(e)
print(x)
l.logr('49.df_M_Confirmed_' + var1 + '.csv', DInd, df_M_Confirmed, 'log')
l.logr('50.df_M_Deaths_' + var1 + '.csv', DInd, df_M_Deaths, 'log')
# Removing unwanted columns
df_M_Confirmed.drop(columns=['trend', 'trend_lower', 'trend_upper'], axis=1, inplace=True)
df_M_Deaths.drop(columns=['trend', 'trend_lower', 'trend_upper'], axis=1, inplace=True)
l.logr('51.df_M_Confirmed_' + var1 + '.csv', DInd, df_M_Confirmed, 'log')
l.logr('52.df_M_Deaths_' + var1 + '.csv', DInd, df_M_Deaths, 'log')
# Creating original dataframe from the source API
df_M_Confirmed_Orig = g_df[['CountryCode', 'ReportedDate','NewConfirmed']]
df_M_Deaths_Orig = g_df[['CountryCode', 'ReportedDate','NewDeaths']]
# Transforming Country Code
df_M_Confirmed_Orig['Country'] = df_M_Confirmed_Orig.apply(lambda row: lookupCountry(row), axis=1)
df_M_Deaths_Orig['Country'] = df_M_Deaths_Orig.apply(lambda row: lookupCountry(row), axis=1)
# Dropping unwanted column
df_M_Confirmed_Orig.drop(columns=['CountryCode'], axis=1, inplace=True)
df_M_Deaths_Orig.drop(columns=['CountryCode'], axis=1, inplace=True)
# Reordering columns
df_M_Confirmed_Orig = df_M_Confirmed_Orig.reindex(['ReportedDate','Country','NewConfirmed'], axis=1)
df_M_Deaths_Orig = df_M_Deaths_Orig.reindex(['ReportedDate','Country','NewDeaths'], axis=1)
l.logr('53.df_M_Confirmed_Orig_' + var1 + '.csv', DInd, df_M_Confirmed_Orig, 'log')
l.logr('54.df_M_Deaths_Orig_' + var1 + '.csv', DInd, df_M_Deaths_Orig, 'log')
# Filter out only the predicted data
filterDF_1 = extractPredictedDF(df_M_Confirmed_Orig, df_M_Confirmed, 'NewConfirmed')
l.logr('55.filterDF_1_' + var1 + '.csv', DInd, filterDF_1, 'log')
filterDF_2 = extractPredictedDF(df_M_Confirmed_Orig, df_M_Confirmed, 'NewDeaths')
l.logr('56.filterDF_2_' + var1 + '.csv', DInd, filterDF_2, 'log')
# Calling the final publish events
retVa = publishEvents(df_M_Confirmed_Orig, df_M_Deaths_Orig, filterDF_1, filterDF_2, var1, DInd)
if retVa == 0:
print('Successfully stream processed!')
else:
print('Failed to process stream!')
var2 = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
print('End Time: ' + str(var2))
print('*' *60)
except Exception as e:
x = str(e)
print(x)
if __name__ == "__main__":
main()

Let us understand the enhancement part of this script –

We’ve taken out the plotly part as we will use a separate dashboard script to visualize the data trend.

However, we need to understand the initial consumed data from API & how we transform the data, which will be helpful for visualization.

The initial captured data should look like this after extracting only the relevant elements from the API response.

Initial Data from API

As you can see that based on the country & reported date, our application is consuming attributes like Total-Reported-Death, Total-Recovered, New-death, New-Confirmed & so on.

From this list, we’ve taken two attributes for our use cases & they are New-Death & New-Confirmed. Also, we’re predicting the Future-New-Death & Future-New-Confirmed based on the historical data using Facebook’s prophet API.

And, we would be transposing them & extract the countries & put them as columns for better representations.

Transposed Data

Hence, here is the code that we should be exploring –

def toPivot(inDF, colName):
    try:
        iDF = inDF

        iDF_Piv = iDF.pivot_table(colName, ['ReportedDate'], 'Country')
        iDF_Piv.reset_index( drop=False, inplace=True )

        list1 = ['ReportedDate']

        iDF_Arr = iDF['Country'].unique()
        list2 = iDF_Arr.tolist()

        listV = list1 + list2

        iDF_Piv.reindex([listV], axis=1)

        return iDF_Piv
    except Exception as e:
        x = str(e)
        print(x)

        df = p.DataFrame()

        return df

Now, using the pivot_table function, we’re transposing the row values into the columns. And, later we’ve realigned the column heading as per our desired format.

However, we still have the data as per individual daily dates in this case. We want to eliminate that by removing the daypart & then aggregate them by month as shown below –

Aggregated Data

And, here is the code for that –

def toAgg(inDF, var, debugInd, flg):
    try:
        iDF = inDF
        colName = "ReportedDate"

        list1 = list(iDF.columns.values)
        list1.remove(colName)

        list1 = ["Brazil", "Canada", "Germany", "India", "Indonesia", "UnitedKingdom", "UnitedStates"]

        iDF['Year_Mon'] = iDF[colName].apply(lambda x:x.strftime('%Y%m'))
        iDF.drop(columns=[colName], axis=1, inplace=True)

        ColNameGrp = "Year_Mon"
        print('List1 Aggregate:: ', str(list1))
        print('ColNameGrp :: ', str(ColNameGrp))

        iDF_T = iDF[["Year_Mon", "Brazil", "Canada", "Germany", "India", "Indonesia", "UnitedKingdom", "UnitedStates"]]
        iDF_T.fillna(0, inplace = True)
        print('iDF_T:: ')
        print(iDF_T)

        iDF_1_max_group = iDF_T.groupby(ColNameGrp, as_index=False)[list1].sum()
        iDF_1_max_group['Status'] = flg

        return iDF_1_max_group
    except Exception as e:
        x = str(e)
        print(x)

        df = p.DataFrame()

        return df

From the above snippet we can conclude that the application is taking out the daypart & then aggregate it based on the Year_Mon attribute.

The following snippet will push the final transformed data to Ably queue –

x1 = cps.clsPublishStream()

# Pushing both the Historical Confirmed Cases
retVal_1 = x1.pushEvents(iDF1_Agg, debugInd, var, NC)

if retVal_1 == 0:
    print('Successfully historical event pushed!')
else:
    print('Failed to push historical events!')

5. dashboard_realtime.py ( Main calling script to consume the data from Ably queue & then visualize the trend. )


##############################################
#### Written By: SATYAKI DE ####
#### Written On: 08-Sep-2021 ####
#### Modified On 08-Sep-2021 ####
#### ####
#### Objective: This is the main script ####
#### to invoke dashboard after consuming ####
#### streaming real-time predicted data ####
#### using Facebook API & Ably message Q. ####
#### ####
#### This script will show the trend ####
#### comparison between major democracies ####
#### of the world. ####
#### ####
##############################################
import datetime
import dash
from dash import dcc
from dash import html
import plotly
from dash.dependencies import Input, Output
from ably import AblyRest
from clsConfig import clsConfig as cf
import pandas as p
# Main Class to consume streaming
import clsStreamConsume as ca
import numpy as np
# Create the instance of the Covid API Class
x1 = ca.clsStreamConsume()
external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css&#39;]
app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
app.layout = html.Div(
html.Div([
html.H1("Covid-19 Trend Dashboard",
className='text-center text-primary mb-4'),
html.H5(children='''
Dash: Covid-19 Trend – (Present Vs Future)
'''),
html.P("Covid-19: New Confirmed Cases:",
style={"textDecoration": "underline"}),
dcc.Graph(id='live-update-graph-1'),
html.P("Covid-19: New Death Cases:",
style={"textDecoration": "underline"}),
dcc.Graph(id='live-update-graph-2'),
dcc.Interval(
id='interval-component',
interval=5*1000, # in milliseconds
n_intervals=0
)
], className="row", style={'marginBottom': 10, 'marginTop': 10})
)
def to_OptimizeString(row):
try:
x_str = str(row['Year_Mon'])
dt_format = '%Y%m%d'
finStr = x_str + '01'
strReportDate = datetime.datetime.strptime(finStr, dt_format)
return strReportDate
except Exception as e:
x = str(e)
print(x)
dt_format = '%Y%m%d'
var = '20990101'
strReportDate = datetime.strptime(var, dt_format)