Realtime reading from a Streaming using Computer Vision

This week we’re going to extend one of our earlier posts & trying to read an entire text from streaming using computer vision. If you want to view the previous post, please click the following link.

But, before we proceed, why don’t we view the demo first?

Demo

Architecture:

Let us understand the architecture flow –

Architecture flow

The above diagram shows that the application, which uses the Open-CV, analyzes individual frames from the source & extracts the complete text within the video & displays it on top of the target screen besides prints the same in the console.

Python Packages:

pip install imutils==0.5.4
pip install matplotlib==3.5.2
pip install numpy==1.21.6
pip install opencv-contrib-python==4.6.0.66
pip install opencv-contrib-python-headless==4.6.0.66
pip install opencv-python==4.6.0.66
pip install opencv-python-headless==4.6.0.66
pip install pandas==1.3.5
pip install Pillow==9.1.1
pip install pytesseract==0.3.9
pip install python-dateutil==2.8.2

CODE:

Let us now understand the code. For this use case, we will only discuss three python scripts. However, we need more than these three. However, we have already discussed them in some of the early posts. Hence, we will skip them here.

  • clsReadingTextFromStream.py (This is the main class of python script that will extract the text from the WebCAM streaming in real-time.)


##################################################
#### Written By: SATYAKI DE ####
#### Written On: 22-Jul-2022 ####
#### Modified On 25-Jul-2022 ####
#### ####
#### Objective: This is the main class of ####
#### python script that will invoke the ####
#### extraction of texts from a WebCAM. ####
#### ####
##################################################
# Importing necessary packages
from clsConfig import clsConfig as cf
from imutils.object_detection import non_max_suppression
import numpy as np
import pytesseract
import imutils
import time
import cv2
import time
###############################################
### Global Section ###
###############################################
# Two output layer names for the text detector model
lNames = cf.conf['LAYER_DET']
# Tesseract OCR text param values
strVal = "-l " + str(cf.conf['LANG']) + " –oem " + str(cf.conf['OEM_VAL']) + " –psm " + str(cf.conf['PSM_VAL']) + ""
config = (strVal)
###############################################
### End of Global Section ###
###############################################
class clsReadingTextFromStream:
def __init__(self):
self.sep = str(cf.conf['SEP'])
self.Curr_Path = str(cf.conf['INIT_PATH'])
self.CacheL = int(cf.conf['CACHE_LIM'])
self.modelPath = str(cf.conf['MODEL_PATH']) + str(cf.conf['MODEL_FILE_NAME'])
self.minConf = float(cf.conf['MIN_CONFIDENCE'])
self.wt = int(cf.conf['WIDTH'])
self.ht = int(cf.conf['HEIGHT'])
self.pad = float(cf.conf['PADDING'])
self.title = str(cf.conf['TITLE'])
self.Otitle = str(cf.conf['ORIG_TITLE'])
self.drawTag = cf.conf['DRAW_TAG']
self.aRange = int(cf.conf['ASCII_RANGE'])
self.sParam = cf.conf['SUBTRACT_PARAM']
def findBoundBox(self, boxes, res, rW, rH, orig, origW, origH, pad):
try:
# Loop over the bounding boxes
for (spX, spY, epX, epY) in boxes:
# Scale the bounding box coordinates based on the respective
# ratios
spX = int(spX * rW)
spY = int(spY * rH)
epX = int(epX * rW)
epY = int(epY * rH)
# To obtain a better OCR of the text we can potentially
# apply a bit of padding surrounding the bounding box.
# And, computing the deltas in both the x and y directions
dX = int((epX spX) * pad)
dY = int((epY spY) * pad)
# Apply padding to each side of the bounding box, respectively
spX = max(0, spX dX)
spY = max(0, spY dY)
epX = min(origW, epX + (dX * 2))
epY = min(origH, epY + (dY * 2))
# Extract the actual padded ROI
roi = orig[spY:epY, spX:epX]
# Choose the proper OCR Config
text = pytesseract.image_to_string(roi, config=config)
# Add the bounding box coordinates and OCR'd text to the list
# of results
res.append(((spX, spY, epX, epY), text))
# Sort the results bounding box coordinates from top to bottom
res = sorted(res, key=lambda r:r[0][1])
return res
except Exception as e:
x = str(e)
print(x)
return res
def predictText(self, imgScore, imgGeo):
try:
minConf = self.minConf
# Initializing the bounding box rectangles & confidence score by
# extracting the rows & columns from the imgScore volume.
(numRows, numCols) = imgScore.shape[2:4]
rects = []
confScore = []
for y in range(0, numRows):
# Extract the imgScore probabilities to derive potential
# bounding box coordinates that surround text
imgScoreData = imgScore[0, 0, y]
xVal0 = imgGeo[0, 0, y]
xVal1 = imgGeo[0, 1, y]
xVal2 = imgGeo[0, 2, y]
xVal3 = imgGeo[0, 3, y]
anglesData = imgGeo[0, 4, y]
for x in range(0, numCols):
# If our score does not have sufficient probability,
# ignore it
if imgScoreData[x] < minConf:
continue
# Compute the offset factor as our resulting feature
# maps will be 4x smaller than the input frame
(offX, offY) = (x * 4.0, y * 4.0)
# Extract the rotation angle for the prediction and
# then compute the sin and cosine
angle = anglesData[x]
cos = np.cos(angle)
sin = np.sin(angle)
# Derive the width and height of the bounding box from
# imgGeo
h = xVal0[x] + xVal2[x]
w = xVal1[x] + xVal3[x]
# Compute both the starting and ending (x, y)-coordinates
# for the text prediction bounding box
epX = int(offX + (cos * xVal1[x]) + (sin * xVal2[x]))
epY = int(offY (sin * xVal1[x]) + (cos * xVal2[x]))
spX = int(epX w)
spY = int(epY h)
# Adding bounding box coordinates and probability score
# to the respective lists
rects.append((spX, spY, epX, epY))
confScore.append(imgScoreData[x])
# return a tuple of the bounding boxes and associated confScore
return (rects, confScore)
except Exception as e:
x = str(e)
print(x)
rects = []
confScore = []
return (rects, confScore)
def processStream(self, debugInd, var):
try:
sep = self.sep
Curr_Path = self.Curr_Path
CacheL = self.CacheL
modelPath = self.modelPath
minConf = self.minConf
wt = self.wt
ht = self.ht
pad = self.pad
title = self.title
Otitle = self.Otitle
drawTag = self.drawTag
aRange = self.aRange
sParam = self.sParam
val = 0
# Initialize the video stream and allow the camera sensor to warm up
print("[INFO] Starting video stream…")
cap = cv2.VideoCapture(0)
# Loading the pre-trained text detector
print("[INFO] Loading Text Detector…")
net = cv2.dnn.readNet(modelPath)
# Loop over the frames from the video stream
while True:
try:
# Grab the frame from our video stream and resize it
success, frame = cap.read()
orig = frame.copy()
(origH, origW) = frame.shape[:2]
# Setting new width and height and then determine the ratio in change
# for both the width and height
(newW, newH) = (wt, ht)
rW = origW / float(newW)
rH = origH / float(newH)
# Resize the frame and grab the new frame dimensions
frame = cv2.resize(frame, (newW, newH))
(H, W) = frame.shape[:2]
# Construct a blob from the frame and then perform a forward pass of
# the model to obtain the two output layer sets
blob = cv2.dnn.blobFromImage(frame, 1.0, (W, H), sParam, swapRB=True, crop=False)
net.setInput(blob)
(confScore, imgGeo) = net.forward(lNames)
# Decode the predictions, then apply non-maxima suppression to
# suppress weak, overlapping bounding boxes
(rects, confidences) = self.predictText(confScore, imgGeo)
boxes = non_max_suppression(np.array(rects), probs=confidences)
# Initialize the list of results
res = []
# Getting BoundingBox boundaries
res = self.findBoundBox(boxes, res, rW, rH, orig, origW, origH, pad)
for ((spX, spY, epX, epY), text) in res:
# Display the text OCR by using Tesseract APIs
print("Reading Text::")
print("=" *60)
print(text)
print("=" *60)
# Removing the non-ASCII text so it can draw the text on the frame
# using OpenCV, then draw the text and a bounding box surrounding
# the text region of the input frame
text = "".join([c if ord(c) < aRange else "" for c in text]).strip()
output = orig.copy()
cv2.rectangle(output, (spX, spY), (epX, epY), drawTag, 2)
cv2.putText(output, text, (spX, spY 20), cv2.FONT_HERSHEY_SIMPLEX, 1.2, drawTag, 3)
# Show the output frame
cv2.imshow(title, output)
#cv2.imshow(Otitle, frame)
# If the `q` key was pressed, break from the loop
if cv2.waitKey(1) == ord('q'):
break
val = 0
except Exception as e:
x = str(e)
print(x)
val = 1
# Performing cleanup at the end
cap.release()
cv2.destroyAllWindows()
return val
except Exception as e:
x = str(e)
print('Error:', x)
return 1

Please find the key snippet from the above script –

# Two output layer names for the text detector model

lNames = cf.conf['LAYER_DET']

# Tesseract OCR text param values

strVal = "-l " + str(cf.conf['LANG']) + " --oem " + str(cf.conf['OEM_VAL']) + " --psm " + str(cf.conf['PSM_VAL']) + ""
config = (strVal)

The first line contains the two output layers’ names for the text detector model. Among them, the first one indicates the outcome possibilities & the second one use to derive the bounding box coordinates of the predicted text.

The second line contains various options for the tesseract APIs. You need to understand the opportunities in detail to make them work. These are the essential options for our use case –

  • Language – The intended language, for example, English, Spanish, Hindi, Bengali, etc.
  • OEM flag – In this case, the application will use 4 to indicate LSTM neural net model for OCR.
  • OEM Value – In this case, the selected value is 7, indicating that the application treats the ROI as a single line of text.

For more details, please refer to the config file.

print("[INFO] Loading Text Detector...")
net = cv2.dnn.readNet(modelPath)

The above lines bring the already created model & load it to memory for evaluation.

# Setting new width and height and then determine the ratio in change
# for both the width and height
(newW, newH) = (wt, ht)
rW = origW / float(newW)
rH = origH / float(newH)

# Resize the frame and grab the new frame dimensions
frame = cv2.resize(frame, (newW, newH))
(H, W) = frame.shape[:2]

# Construct a blob from the frame and then perform a forward pass of
# the model to obtain the two output layer sets
blob = cv2.dnn.blobFromImage(frame, 1.0, (W, H), sParam, swapRB=True, crop=False)
net.setInput(blob)
(confScore, imgGeo) = net.forward(lNames)

# Decode the predictions, then apply non-maxima suppression to
# suppress weak, overlapping bounding boxes
(rects, confidences) = self.predictText(confScore, imgGeo)
boxes = non_max_suppression(np.array(rects), probs=confidences)

The above lines are more of preparing individual frames to get the bounding box by resizing the height & width followed by a forward pass of the model to obtain two output layer sets. And then apply the non-maxima suppression to remove the weak, overlapping bounding box by interpreting the prediction. In short, this will identify the potential text region & put the bounding box surrounding it.

# Initialize the list of results
res = []

# Getting BoundingBox boundaries
res = self.findBoundBox(boxes, res, rW, rH, orig, origW, origH, pad)

The above function will create the bounding box surrounding the predicted text regions. Also, we will capture the expected text inside the result variable.

for (spX, spY, epX, epY) in boxes:
  # Scale the bounding box coordinates based on the respective
  # ratios
  spX = int(spX * rW)
  spY = int(spY * rH)
  epX = int(epX * rW)
  epY = int(epY * rH)

  # To obtain a better OCR of the text we can potentially
  # apply a bit of padding surrounding the bounding box.
  # And, computing the deltas in both the x and y directions
  dX = int((epX - spX) * pad)
  dY = int((epY - spY) * pad)

  # Apply padding to each side of the bounding box, respectively
  spX = max(0, spX - dX)
  spY = max(0, spY - dY)
  epX = min(origW, epX + (dX * 2))
  epY = min(origH, epY + (dY * 2))

  # Extract the actual padded ROI
  roi = orig[spY:epY, spX:epX]

Now, the application will scale the bounding boxes based on the previously computed ratio for actual text recognition. In this process, the application also padded the bounding boxes & then extracted the padded region of interest.

# Choose the proper OCR Config
text = pytesseract.image_to_string(roi, config=config)

# Add the bounding box coordinates and OCR'd text to the list
# of results
res.append(((spX, spY, epX, epY), text))

Using OCR options, the application extracts the text within the video frame & adds that to the res list.

# Sort the results bounding box coordinates from top to bottom
res = sorted(res, key=lambda r:r[0][1])

It then sends a sorted output to the primary calling functions.

for ((spX, spY, epX, epY), text) in res:
  # Display the text OCR by using Tesseract APIs
  print("Reading Text::")
  print("=" *60)
  print(text)
  print("=" *60)

  # Removing the non-ASCII text so it can draw the text on the frame
  # using OpenCV, then draw the text and a bounding box surrounding
  # the text region of the input frame
  text = "".join([c if ord(c) < aRange else "" for c in text]).strip()
  output = orig.copy()

  cv2.rectangle(output, (spX, spY), (epX, epY), drawTag, 2)
  cv2.putText(output, text, (spX, spY - 20), cv2.FONT_HERSHEY_SIMPLEX, 1.2, drawTag, 3)

  # Show the output frame
  cv2.imshow(title, output)

Finally, it fetches the potential text region along with the text & then prints on top of the source video. Also, it removed some non-printable characters during this time to avoid any cryptic texts.

  • readingVideo.py (Main calling script.)


#####################################################
#### Written By: SATYAKI DE ####
#### Written On: 22-Jul-2022 ####
#### Modified On 25-Jul-2022 ####
#### ####
#### Objective: This is the main calling ####
#### python script that will invoke the ####
#### clsReadingTextFromStream class to initiate ####
#### the reading capability in real-time ####
#### & display text via Web-CAM. ####
#####################################################
# We keep the setup code in a different class as shown below.
import clsReadingTextFromStream as rtfs
from clsConfig import clsConfig as cf
import datetime
import logging
###############################################
### Global Section ###
###############################################
# Instantiating all the main class
x1 = rtfs.clsReadingTextFromStream()
###############################################
### End of Global Section ###
###############################################
def main():
try:
# Other useful variables
debugInd = 'Y'
var = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
var1 = datetime.datetime.now()
print('Start Time: ', str(var))
# End of useful variables
# Initiating Log Class
general_log_path = str(cf.conf['LOG_PATH'])
# Enabling Logging Info
logging.basicConfig(filename=general_log_path + 'readingTextFromVideo.log', level=logging.INFO)
print('Started reading text from videos!')
# Execute all the pass
r1 = x1.processStream(debugInd, var)
if (r1 == 0):
print('Successfully read text from the Live Stream!')
else:
print('Failed to read text from the Live Stream!')
var2 = datetime.datetime.now()
c = var2 var1
minutes = c.total_seconds() / 60
print('Total difference in minutes: ', str(minutes))
print('End Time: ', str(var1))
except Exception as e:
x = str(e)
print('Error: ', x)
if __name__ == "__main__":
main()

view raw

readingVideo.py

hosted with ❤ by GitHub

Please find the key snippet –

# Instantiating all the main class

x1 = rtfs.clsReadingTextFromStream()

# Execute all the pass
r1 = x1.processStream(debugInd, var)

if (r1 == 0):
    print('Successfully read text from the Live Stream!')
else:
    print('Failed to read text from the Live Stream!')

The above lines instantiate the main calling class & then invoke the function to get the desired extracted text from the live streaming video if that is successful.

FOLDER STRUCTURE:

Here is the folder structure that contains all the files & directories in MAC O/S –

You will get the complete codebase in the following Github link.

Unfortunately, I cannot upload the model due to it’s size. I will share on the need basis.

I’ll bring some more exciting topic in the coming days from the Python verse. Please share & subscribe my post & let me know your feedback.

Till then, Happy Avenging! 🙂

Note: All the data & scenario posted here are representational data & scenarios & available over the internet & for educational purpose only. Some of the images (except my photo) that we’ve used are available over the net. We don’t claim the ownership of these images. There is an always room for improvement & especially the prediction quality.

Real-time augmented reality (AR) using Python-based Computer Vision

Hi Team,

Today, I’m going to discuss another Computer Vision installment. I’ll discuss how to implement Augmented Reality using Open-CV Computer Vision with full audio. We will be using part of a Bengali OTT Series called “Feludar Goendagiri” entirely for educational purposes & also as a tribute to the great legendary director, late Satyajit Roy. To know more about him, please click the following link.

Why don’t we see the demo first before jumping into the technical details?


Demo

Architecture:

Let us understand the architecture –

Process Flow

The above diagram shows that the application, which uses the Open-CV, analyzes individual frames from the source & blends that with the video trailer. Finally, it creates another video by correctly mixing the source audio.

Python Packages:

Following are the python packages that are necessary to develop this brilliant use case –

pip install opencv-python
pip install pygame

CODE:

Let us now understand the code. For this use case, we will only discuss three python scripts. However, we need more than these three. However, we have already discussed them in some of the early posts. Hence, we will skip them here.

  • clsAugmentedReality.py (This is the main class of python script that will embed the source video with the WebCAM streams in real-time.)


##################################################
#### Written By: SATYAKI DE ####
#### Written On: 20-Jun-2022 ####
#### Modified On 25-Jun-2022 ####
#### ####
#### Objective: This is the main class of ####
#### python script that will embed the source ####
#### video with the WebCAM streams in ####
#### real-time. ####
##################################################
# Importing necessary packages
import numpy as np
import cv2
from clsConfig import clsConfig as cf
# Initialize our cached reference points
CACHED_REF_PTS = None
class clsAugmentedReality:
def __init__(self):
self.TOP_LEFT_X = int(cf.conf['TOP_LEFT_X'])
self.TOP_LEFT_Y = int(cf.conf['TOP_LEFT_Y'])
self.TOP_RIGHT_X = int(cf.conf['TOP_RIGHT_X'])
self.TOP_RIGHT_Y = int(cf.conf['TOP_RIGHT_Y'])
self.BOTTOM_RIGHT_X = int(cf.conf['BOTTOM_RIGHT_X'])
self.BOTTOM_RIGHT_Y = int(cf.conf['BOTTOM_RIGHT_Y'])
self.BOTTOM_LEFT_X = int(cf.conf['BOTTOM_LEFT_X'])
self.BOTTOM_LEFT_Y = int(cf.conf['BOTTOM_LEFT_Y'])
def getWarpImages(self, frame, source, cornerIDs, arucoDict, arucoParams, zoomFlag, useCache=False):
try:
# Assigning values
TOP_LEFT_X = self.TOP_LEFT_X
TOP_LEFT_Y = self.TOP_LEFT_Y
TOP_RIGHT_X = self.TOP_RIGHT_X
TOP_RIGHT_Y = self.TOP_RIGHT_Y
BOTTOM_RIGHT_X = self.BOTTOM_RIGHT_X
BOTTOM_RIGHT_Y = self.BOTTOM_RIGHT_Y
BOTTOM_LEFT_X = self.BOTTOM_LEFT_X
BOTTOM_LEFT_Y = self.BOTTOM_LEFT_Y
# Grab a reference to our cached reference points
global CACHED_REF_PTS
if source is None:
raise
# Grab the width and height of the frame and source image,
# respectively
# Extracting Frame from Camera
# Exracting Source from Video
(imgH, imgW) = frame.shape[:2]
(srcH, srcW) = source.shape[:2]
# Detect Aruco markers in the input frame
(corners, ids, rejected) = cv2.aruco.detectMarkers(frame, arucoDict, parameters=arucoParams)
print('Ids: ', str(ids))
print('Rejected: ', str(rejected))
# if we *did not* find our four ArUco markers, initialize an
# empty IDs list, otherwise flatten the ID list
print('Detecting Corners: ', str(len(corners)))
ids = np.array([]) if len(corners) != 4 else ids.flatten()
# Initialize our list of reference points
refPts = []
refPtTL1 = []
# Loop over the IDs of the ArUco markers in Top-Left, Top-Right,
# Bottom-Right, and Bottom-Left order
for i in cornerIDs:
# Grab the index of the corner with the current ID
j = np.squeeze(np.where(ids == i))
# If we receive an empty list instead of an integer index,
# then we could not find the marker with the current ID
if j.size == 0:
continue
# Otherwise, append the corner (x, y)-coordinates to our list
# of reference points
corner = np.squeeze(corners[j])
refPts.append(corner)
# Check to see if we failed to find the four ArUco markers
if len(refPts) != 4:
# If we are allowed to use cached reference points, fall
# back on them
if useCache and CACHED_REF_PTS is not None:
refPts = CACHED_REF_PTS
# Otherwise, we cannot use the cache and/or there are no
# previous cached reference points, so return early
else:
return None
# If we are allowed to use cached reference points, then update
# the cache with the current set
if useCache:
CACHED_REF_PTS = refPts
# Unpack our Aruco reference points and use the reference points
# to define the Destination transform matrix, making sure the
# points are specified in Top-Left, Top-Right, Bottom-Right, and
# Bottom-Left order
(refPtTL, refPtTR, refPtBR, refPtBL) = refPts
dstMat = [refPtTL[0], refPtTR[1], refPtBR[2], refPtBL[3]]
dstMat = np.array(dstMat)
# For zoom option recalculating all the 4 points
refPtTL1_L_X = refPtTL[0][0]TOP_LEFT_X
refPtTL1_L_Y = refPtTL[0][1]TOP_LEFT_Y
refPtTL1.append((refPtTL1_L_X,refPtTL1_L_Y))
refPtTL1_R_X = refPtTL[1][0]+TOP_RIGHT_X
refPtTL1_R_Y = refPtTL[1][1]+TOP_RIGHT_Y
refPtTL1.append((refPtTL1_R_X,refPtTL1_R_Y))
refPtTD1_L_X = refPtTL[2][0]+BOTTOM_RIGHT_X
refPtTD1_L_Y = refPtTL[2][1]+BOTTOM_RIGHT_Y
refPtTL1.append((refPtTD1_L_X,refPtTD1_L_Y))
refPtTD1_R_X = refPtTL[3][0]BOTTOM_LEFT_X
refPtTD1_R_Y = refPtTL[3][1]+BOTTOM_LEFT_Y
refPtTL1.append((refPtTD1_R_X,refPtTD1_R_Y))
dstMatMod = [refPtTL1[0], refPtTL1[1], refPtTL1[2], refPtTL1[3]]
dstMatMod = np.array(dstMatMod)
# Define the transform matrix for the *source* image in Top-Left,
# Top-Right, Bottom-Right, and Bottom-Left order
srcMat = np.array([[0, 0], [srcW, 0], [srcW, srcH], [0, srcH]])
# Compute the homography matrix and then warp the source image to
# the destination based on the homography depending upon the
# zoom flag
if zoomFlag == 1:
(H, _) = cv2.findHomography(srcMat, dstMat)
else:
(H, _) = cv2.findHomography(srcMat, dstMatMod)
warped = cv2.warpPerspective(source, H, (imgW, imgH))
# Construct a mask for the source image now that the perspective
# warp has taken place (we'll need this mask to copy the source
# image into the destination)
mask = np.zeros((imgH, imgW), dtype="uint8")
if zoomFlag == 1:
cv2.fillConvexPoly(mask, dstMat.astype("int32"), (255, 255, 255), cv2.LINE_AA)
else:
cv2.fillConvexPoly(mask, dstMatMod.astype("int32"), (255, 255, 255), cv2.LINE_AA)
# This optional step will give the source image a black
# border surrounding it when applied to the source image, you
# can apply a dilation operation
rect = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
mask = cv2.dilate(mask, rect, iterations=2)
# Create a three channel version of the mask by stacking it
# depth-wise, such that we can copy the warped source image
# into the input image
maskScaled = mask.copy() / 255.0
maskScaled = np.dstack([maskScaled] * 3)
# Copy the warped source image into the input image by
# (1) Multiplying the warped image and masked together,
# (2) Then multiplying the original input image with the
# mask (giving more weight to the input where there
# are not masked pixels), and
# (3) Adding the resulting multiplications together
warpedMultiplied = cv2.multiply(warped.astype("float"), maskScaled)
imageMultiplied = cv2.multiply(frame.astype(float), 1.0 maskScaled)
output = cv2.add(warpedMultiplied, imageMultiplied)
output = output.astype("uint8")
# Return the output frame to the calling function
return output
except Exception as e:
# Delibarately raising the issue
# That way the control goes to main calling methods
# exception section
raise

Please find the key snippet from the above script –

(imgH, imgW) = frame.shape[:2]
(srcH, srcW) = source.shape[:2]

# Detect Aruco markers in the input frame
(corners, ids, rejected) = cv2.aruco.detectMarkers(frame, arucoDict, parameters=arucoParams)

Identifying the Aruco markers are key here. The above lines help the program detect all four corners.

However, let us discuss more on the Aruco markers & strategies that I’ve used for several different surfaces.

As you can see, the right-hand side Aruco marker is tiny compared to the left one. Hence, that one will be ideal for a curve surface like Coffee Mug, Bottle rather than a flat surface.

Also, we’ve demonstrated the zoom capability with the smaller Aruco marker that will Augment almost double the original surface area.

Let us understand why we need that; as you know, any spherical surface like a bottle is round-shaped. Hence, detecting relatively more significant Aruco markers in four corners will be difficult for any camera to identify.

Hence, we need a process where close four corners can be extrapolated mathematically to relatively larger projected areas easily detectable by any WebCAM.

Let’s observe the following figure –

Simulated Extrapolated corners

As you can see that the original position of the four corners is represented using the following points, i.e., (x1, y1), (x2, y2), (x3, y3) & (x4, y4).

And these positions are very close to each other. Hence, it will be easier for the camera to detect all the points (like a plain surface) without many retries.

And later, you can add specific values of x & y to them to get the derived four corners as shown in the above figures through the following points, i.e. (x1.1, y1.1), (x2.1, y2.1), (x3.1, y3.1) & (x4.1, y4.1).

# Loop over the IDs of the ArUco markers in Top-Left, Top-Right,
# Bottom-Right, and Bottom-Left order
for i in cornerIDs:
  # Grab the index of the corner with the current ID
  j = np.squeeze(np.where(ids == i))

  # If we receive an empty list instead of an integer index,
  # then we could not find the marker with the current ID
  if j.size == 0:
    continue

  # Otherwise, append the corner (x, y)-coordinates to our list
  # of reference points
  corner = np.squeeze(corners[j])
  refPts.append(corner)

# Check to see if we failed to find the four ArUco markers
if len(refPts) != 4:
  # If we are allowed to use cached reference points, fall
  # back on them
  if useCache and CACHED_REF_PTS is not None:
    refPts = CACHED_REF_PTS

  # Otherwise, we cannot use the cache and/or there are no
  # previous cached reference points, so return early
  else:
    return None

# If we are allowed to use cached reference points, then update
# the cache with the current set
if useCache:
  CACHED_REF_PTS = refPts

# Unpack our Aruco reference points and use the reference points
# to define the Destination transform matrix, making sure the
# points are specified in Top-Left, Top-Right, Bottom-Right, and
# Bottom-Left order
(refPtTL, refPtTR, refPtBR, refPtBL) = refPts
dstMat = [refPtTL[0], refPtTR[1], refPtBR[2], refPtBL[3]]
dstMat = np.array(dstMat)

In the above snippet, the application will scan through all the points & try to detect Aruco markers & then create a list of reference points, which will later be used to define the destination transformation matrix.

# For zoom option recalculating all the 4 points
refPtTL1_L_X = refPtTL[0][0]-TOP_LEFT_X
refPtTL1_L_Y = refPtTL[0][1]-TOP_LEFT_Y

refPtTL1.append((refPtTL1_L_X,refPtTL1_L_Y))

refPtTL1_R_X = refPtTL[1][0]+TOP_RIGHT_X
refPtTL1_R_Y = refPtTL[1][1]+TOP_RIGHT_Y

refPtTL1.append((refPtTL1_R_X,refPtTL1_R_Y))

refPtTD1_L_X = refPtTL[2][0]+BOTTOM_RIGHT_X
refPtTD1_L_Y = refPtTL[2][1]+BOTTOM_RIGHT_Y

refPtTL1.append((refPtTD1_L_X,refPtTD1_L_Y))

refPtTD1_R_X = refPtTL[3][0]-BOTTOM_LEFT_X
refPtTD1_R_Y = refPtTL[3][1]+BOTTOM_LEFT_Y

refPtTL1.append((refPtTD1_R_X,refPtTD1_R_Y))

dstMatMod = [refPtTL1[0], refPtTL1[1], refPtTL1[2], refPtTL1[3]]
dstMatMod = np.array(dstMatMod)

The above snippets calculate the revised points for the zoom-out capabilities as discussed in one of the earlier figures.

# Define the transform matrix for the *source* image in Top-Left,
# Top-Right, Bottom-Right, and Bottom-Left order
srcMat = np.array([[0, 0], [srcW, 0], [srcW, srcH], [0, srcH]])

The above snippet will create a transformation matrix for the video trailer.

# Compute the homography matrix and then warp the source image to
# the destination based on the homography depending upon the
# zoom flag
if zoomFlag == 1:
  (H, _) = cv2.findHomography(srcMat, dstMat)
else:
  (H, _) = cv2.findHomography(srcMat, dstMatMod)

warped = cv2.warpPerspective(source, H, (imgW, imgH))

# Construct a mask for the source image now that the perspective
# warp has taken place (we'll need this mask to copy the source
# image into the destination)
mask = np.zeros((imgH, imgW), dtype="uint8")
if zoomFlag == 1:
  cv2.fillConvexPoly(mask, dstMat.astype("int32"), (255, 255, 255), cv2.LINE_AA)
else:
  cv2.fillConvexPoly(mask, dstMatMod.astype("int32"), (255, 255, 255), cv2.LINE_AA)

# This optional step will give the source image a black
# border surrounding it when applied to the source image, you
# can apply a dilation operation
rect = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
mask = cv2.dilate(mask, rect, iterations=2)

# Create a three channel version of the mask by stacking it
# depth-wise, such that we can copy the warped source image
# into the input image
maskScaled = mask.copy() / 255.0
maskScaled = np.dstack([maskScaled] * 3)

# Copy the warped source image into the input image by
# (1) Multiplying the warped image and masked together,
# (2) Then multiplying the original input image with the
#     mask (giving more weight to the input where there
#     are not masked pixels), and
# (3) Adding the resulting multiplications together
warpedMultiplied = cv2.multiply(warped.astype("float"), maskScaled)
imageMultiplied = cv2.multiply(frame.astype(float), 1.0 - maskScaled)
output = cv2.add(warpedMultiplied, imageMultiplied)
output = output.astype("uint8")

Finally, depending upon the zoom flag, the application will create a warped image surrounded by an optionally black border.

  • clsEmbedVideoWithStream.py (This is the main class of python script that will invoke the clsAugmentedReality class to initiate augment reality after splitting the audio & video & then project them via the Web-CAM with a seamless broadcast.)


##################################################
#### Written By: SATYAKI DE ####
#### Written On: 22-Jun-2022 ####
#### Modified On 25-Jun-2022 ####
#### ####
#### Objective: This is the main class of ####
#### python script that will invoke the ####
#### clsAugmentedReality class to initiate ####
#### augment reality after splitting the ####
#### audio & video & then project them via ####
#### the Web-CAM with a seamless broadcast. ####
##################################################
# Importing necessary packages
import clsAugmentedReality as ar
from clsConfig import clsConfig as cf
from imutils.video import VideoStream
from collections import deque
import imutils
import time
import cv2
import subprocess
import os
import pygame
import time
import threading
import sys
###############################################
### Global Section ###
###############################################
# Instantiating the dependant class
x1 = ar.clsAugmentedReality()
###############################################
### End of Global Section ###
###############################################
class BreakLoop(Exception):
pass
class clsEmbedVideoWithStream:
def __init__(self):
self.sep = str(cf.conf['SEP'])
self.Curr_Path = str(cf.conf['INIT_PATH'])
self.FileName = str(cf.conf['FILE_NAME'])
self.CacheL = int(cf.conf['CACHE_LIM'])
self.FileName_1 = str(cf.conf['FILE_NAME_1'])
self.audioLen = int(cf.conf['audioLen'])
self.audioFreq = float(cf.conf['audioFreq'])
self.videoFrame = float(cf.conf['videoFrame'])
self.stopFlag=cf.conf['stopFlag']
self.zFlag=int(cf.conf['zoomFlag'])
self.title = str(cf.conf['TITLE'])
def playAudio(self, audioFile, audioLen, freq, stopFlag=False):
try:
pygame.mixer.init()
pygame.init()
pygame.mixer.music.load(audioFile)
pygame.mixer.music.set_volume(10)
val = int(audioLen)
i = 0
while i < val:
pygame.mixer.music.play(loops=0, start=float(i))
time.sleep(freq)
i = i + 1
if (i >= val):
raise BreakLoop
if (stopFlag==True):
raise BreakLoop
return 0
except BreakLoop as s:
return 0
except Exception as e:
x = str(e)
print(x)
return 1
def extractAudio(self, video_file, output_ext="mp3"):
try:
"""Converts video to audio directly using `ffmpeg` command
with the help of subprocess module"""
filename, ext = os.path.splitext(video_file)
subprocess.call(["ffmpeg", "-y", "-i", video_file, f"{filename}.{output_ext}"],
stdout=subprocess.DEVNULL,
stderr=subprocess.STDOUT)
return 0
except Exception as e:
x = str(e)
print('Error: ', x)
return 1
def processStream(self, debugInd, var):
try:
sep = self.sep
Curr_Path = self.Curr_Path
FileName = self.FileName
CacheL = self.CacheL
FileName_1 = self.FileName_1
audioLen = self.audioLen
audioFreq = self.audioFreq
videoFrame = self.videoFrame
stopFlag = self.stopFlag
zFlag = self.zFlag
title = self.title
print('audioFreq:')
print(str(audioFreq))
print('videoFrame:')
print(str(videoFrame))
# Construct the source for Video & Temporary Audio
videoFile = Curr_Path + sep + 'Video' + sep + FileName
audioFile = Curr_Path + sep + 'Video' + sep + FileName_1
# Load the Aruco dictionary and grab the Aruco parameters
print("[INFO] initializing marker detector…")
arucoDict = cv2.aruco.Dictionary_get(cv2.aruco.DICT_ARUCO_ORIGINAL)
arucoParams = cv2.aruco.DetectorParameters_create()
# Initialize the video file stream
print("[INFO] accessing video stream…")
vf = cv2.VideoCapture(videoFile)
x = self.extractAudio(videoFile)
if x == 0:
print('Successfully Audio extracted from the source file!')
else:
print('Failed to extract the source audio!')
# Initialize a queue to maintain the next frame from the video stream
Q = deque(maxlen=128)
# We need to have a frame in our queue to start our augmented reality
# pipeline, so read the next frame from our video file source and add
# it to our queue
(grabbed, source) = vf.read()
Q.appendleft(source)
# Initialize the video stream and allow the camera sensor to warm up
print("[INFO] starting video stream…")
vs = VideoStream(src=0).start()
time.sleep(2.0)
flg = 0
t = threading.Thread(target=self.playAudio, args=(audioFile, audioLen, audioFreq, stopFlag,))
t.daemon = True
try:
# Loop over the frames from the video stream
while len(Q) > 0:
try:
# Grab the frame from our video stream and resize it
frame = vs.read()
frame = imutils.resize(frame, width=1020)
# Attempt to find the ArUCo markers in the frame, and provided
# they are found, take the current source image and warp it onto
# input frame using our augmented reality technique
warped = x1.getWarpImages(
frame, source,
cornerIDs=(923, 1001, 241, 1007),
arucoDict=arucoDict,
arucoParams=arucoParams,
zoomFlag=zFlag,
useCache=CacheL > 0)
# If the warped frame is not None, then we know (1) we found the
# four ArUCo markers and (2) the perspective warp was successfully
# applied
if warped is not None:
# Set the frame to the output augment reality frame and then
# grab the next video file frame from our queue
frame = warped
source = Q.popleft()
if flg == 0:
t.start()
flg = flg + 1
# For speed/efficiency, we can use a queue to keep the next video
# frame queue ready for us — the trick is to ensure the queue is
# always (or nearly full)
if len(Q) != Q.maxlen:
# Read the next frame from the video file stream
(grabbed, nextFrame) = vf.read()
# If the frame was read (meaning we are not at the end of the
# video file stream), add the frame to our queue
if grabbed:
Q.append(nextFrame)
# Show the output frame
cv2.imshow(title, frame)
time.sleep(videoFrame)
# If the `q` key was pressed, break from the loop
if cv2.waitKey(2) & 0xFF == ord('q'):
stopFlag = True
break
except BreakLoop:
raise BreakLoop
except Exception as e:
pass
if (len(Q) == Q.maxlen):
time.sleep(2)
break
except BreakLoop as s:
print('Processed completed!')
# Performing cleanup at the end
cv2.destroyAllWindows()
vs.stop()
except Exception as e:
x = str(e)
print(x)
# Performing cleanup at the end
cv2.destroyAllWindows()
vs.stop()
return 0
except Exception as e:
x = str(e)
print('Error:', x)
return 1

Please find the key snippet from the above script –

def playAudio(self, audioFile, audioLen, freq, stopFlag=False):
  try:
    pygame.mixer.init()
    pygame.init()
    pygame.mixer.music.load(audioFile)

    pygame.mixer.music.set_volume(10)

    val = int(audioLen)
    i = 0

    while i < val:
      pygame.mixer.music.play(loops=0, start=float(i))
      time.sleep(freq)

      i = i + 1

      if (i >= val):
        raise BreakLoop

      if (stopFlag==True):
        raise BreakLoop

    return 0
  except BreakLoop as s:
    return 0
  except Exception as e:
    x = str(e)
    print(x)

    return 1

The above function will initiate the pygame library to run the sound of the video file that has been extracted as part of a separate process.

def extractAudio(self, video_file, output_ext="mp3"):
    try:
        """Converts video to audio directly using `ffmpeg` command
        with the help of subprocess module"""
        filename, ext = os.path.splitext(video_file)
        subprocess.call(["ffmpeg", "-y", "-i", video_file, f"{filename}.{output_ext}"],
                        stdout=subprocess.DEVNULL,
                        stderr=subprocess.STDOUT)

        return 0
    except Exception as e:
        x = str(e)
        print('Error: ', x)

        return 1

The above function temporarily extracts the audio file from the source trailer video.

# Initialize the video file stream
print("[INFO] accessing video stream...")
vf = cv2.VideoCapture(videoFile)

x = self.extractAudio(videoFile)

if x == 0:
    print('Successfully Audio extracted from the source file!')
else:
    print('Failed to extract the source audio!')

# Initialize a queue to maintain the next frame from the video stream
Q = deque(maxlen=128)

# We need to have a frame in our queue to start our augmented reality
# pipeline, so read the next frame from our video file source and add
# it to our queue
(grabbed, source) = vf.read()
Q.appendleft(source)

# Initialize the video stream and allow the camera sensor to warm up
print("[INFO] starting video stream...")
vs = VideoStream(src=0).start()

time.sleep(2.0)
flg = 0

The above snippets read the frames from the video file after invoking the audio extraction. Then, it uses a Queue method to store all the video frames for better performance. And finally, it starts consuming the standard streaming video from the WebCAM to augment the trailer video on top of it.

t = threading.Thread(target=self.playAudio, args=(audioFile, audioLen, audioFreq, stopFlag,))
t.daemon = True

Now, the application has instantiated an orphan thread to spin off the audio play function. The reason is to void the performance & video frame frequency impact on top of it.

while len(Q) > 0:
  try:
    # Grab the frame from our video stream and resize it
    frame = vs.read()
    frame = imutils.resize(frame, width=1020)

    # Attempt to find the ArUCo markers in the frame, and provided
    # they are found, take the current source image and warp it onto
    # input frame using our augmented reality technique
    warped = x1.getWarpImages(
      frame, source,
      cornerIDs=(923, 1001, 241, 1007),
      arucoDict=arucoDict,
      arucoParams=arucoParams,
      zoomFlag=zFlag,
      useCache=CacheL > 0)

    # If the warped frame is not None, then we know (1) we found the
    # four ArUCo markers and (2) the perspective warp was successfully
    # applied
    if warped is not None:
      # Set the frame to the output augment reality frame and then
      # grab the next video file frame from our queue
      frame = warped
      source = Q.popleft()

      if flg == 0:

        t.start()
        flg = flg + 1

    # For speed/efficiency, we can use a queue to keep the next video
    # frame queue ready for us -- the trick is to ensure the queue is
    # always (or nearly full)
    if len(Q) != Q.maxlen:
      # Read the next frame from the video file stream
      (grabbed, nextFrame) = vf.read()

      # If the frame was read (meaning we are not at the end of the
      # video file stream), add the frame to our queue
      if grabbed:
        Q.append(nextFrame)

    # Show the output frame
    cv2.imshow(title, frame)
    time.sleep(videoFrame)

    # If the `q` key was pressed, break from the loop
    if cv2.waitKey(2) & 0xFF == ord('q'):
      stopFlag = True
      break

  except BreakLoop:
    raise BreakLoop
  except Exception as e:
    pass

  if (len(Q) == Q.maxlen):
    time.sleep(2)
    break

The final segment will call the getWarpImages function to get the Augmented image on top of the video. It also checks for the upcoming frames & whether the source video is finished or not. In case of the end, the application will initiate a break method to come out from the infinite WebCAM read. Also, there is a provision for manual exit by pressing the ‘Q’ from the MacBook keyboard.

# Performing cleanup at the end
cv2.destroyAllWindows()
vs.stop()

It is always advisable to close your camera & remove any temporarily available windows that are still left once the application finishes the process.

  • augmentedMovieTrailer.py (Main calling script)


#####################################################
#### Written By: SATYAKI DE ####
#### Written On: 22-Jun-2022 ####
#### Modified On 25-Jun-2022 ####
#### ####
#### Objective: This is the main calling ####
#### python script that will invoke the ####
#### clsEmbedVideoWithStream class to initiate ####
#### the augmented reality in real-time ####
#### & display a trailer on top of any surface ####
#### via Web-CAM. ####
#####################################################
# We keep the setup code in a different class as shown below.
import clsEmbedVideoWithStream as evws
from clsConfig import clsConfig as cf
import datetime
import logging
###############################################
### Global Section ###
###############################################
# Instantiating all the main class
x1 = evws.clsEmbedVideoWithStream()
###############################################
### End of Global Section ###
###############################################
def main():
try:
# Other useful variables
debugInd = 'Y'
var = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
var1 = datetime.datetime.now()
print('Start Time: ', str(var))
# End of useful variables
# Initiating Log Class
general_log_path = str(cf.conf['LOG_PATH'])
# Enabling Logging Info
logging.basicConfig(filename=general_log_path + 'augmentedMovieTrailer.log', level=logging.INFO)
print('Started augmenting videos!')
# Execute all the pass
r1 = x1.processStream(debugInd, var)
if (r1 == 0):
print('Successfully identified human emotions!')
else:
print('Failed to identify the human emotions!')
var2 = datetime.datetime.now()
c = var2 var1
minutes = c.total_seconds() / 60
print('Total difference in minutes: ', str(minutes))
print('End Time: ', str(var1))
except Exception as e:
x = str(e)
print('Error: ', x)
if __name__ == "__main__":
main()

The above script will initially instantiate the main calling class & then invoke the processStream function to create the Augmented Reality.


FOLDER STRUCTURE:

Here is the folder structure that contains all the files & directories in MAC O/S –

Directory Structure

You will get the complete codebase in the following Github link.

If you want to know more about this legendary director & his famous work, please visit the following link.

I’ll bring some more exciting topic in the coming days from the Python verse. Please share & subscribe my post & let me know your feedback.

Till then, Happy Avenging! 🙂

Note: All the data & scenario posted here are representational data & scenarios & available over the internet & for educational purpose only. Some of the images (except my photo) that we’ve used are available over the net. We don’t claim the ownership of these images. There is an always room for improvement & especially the prediction quality.

Detecting real-time human emotions using Open-CV, DeepFace & Python

Hi Guys,

Today, I’ll be using another exciting installment of Computer Vision. Our focus will be on getting a sense of human emotions. Let me explain. This post will demonstrate how to read/detect human emotions by analyzing computer vision videos. We will be using part of a Bengali Movie called “Ganashatru (An enemy of the people)” entirely for educational purposes & also as a tribute to the great legendary director late Satyajit Roy. To know more about him, please click the following link.

Why don’t we see the demo first before jumping into the technical details?

Demo

Architecture:

Let us understand the architecture –

Process Flow

From the above diagram, one can see that the application, which uses both the Open-CV & DeepFace, analyzes individual frames from the source. Then predicts the emotions & adds the label in the target B&W frames. Finally, it creates another video by correctly mixing the source audio.

Python Packages:

Following are the python packages that are necessary to develop this brilliant use case –

pip install deepface
pip install opencv-python
pip install ffpyplayer

CODE:

Let us now understand the code. For this use case, we will only discuss three python scripts. However, we need more than these three. However, we have already discussed them in some of the early posts. Hence, we will skip them here.

  • clsConfig.py (This script will play the video along with audio in sync.)


################################################
#### Written By: SATYAKI DE ####
#### Written On: 15-May-2020 ####
#### Modified On: 22-Apr-2022 ####
#### ####
#### Objective: This script is a config ####
#### file, contains all the keys for ####
#### Machine-Learning & streaming dashboard.####
#### ####
################################################
import os
import platform as pl
class clsConfig(object):
Curr_Path = os.path.dirname(os.path.realpath(__file__))
os_det = pl.system()
if os_det == "Windows":
sep = '\\'
else:
sep = '/'
conf = {
'APP_ID': 1,
'ARCH_DIR': Curr_Path + sep + 'arch' + sep,
'PROFILE_PATH': Curr_Path + sep + 'profile' + sep,
'LOG_PATH': Curr_Path + sep + 'log' + sep,
'REPORT_PATH': Curr_Path + sep + 'report',
'FILE_NAME': 'GonoshotruClimax',
'SRC_PATH': Curr_Path + sep + 'data' + sep,
'FINAL_PATH': Curr_Path + sep + 'Target' + sep,
'APP_DESC_1': 'Video Emotion Capture!',
'DEBUG_IND': 'N',
'INIT_PATH': Curr_Path,
'SUBDIR': 'data',
'SEP': sep,
'VIDEO_FILE_EXTN': '.mp4',
'AUDIO_FILE_EXTN': '.mp3',
'IMAGE_FILE_EXTN': '.jpg',
'TITLE': "Gonoshotru – Emotional Analysis"
}

view raw

clsConfig.py

hosted with ❤ by GitHub

All the above inputs are generic & used as normal parameters.

  • clsFaceEmotionDetect.py (This python class will track the human emotions after splitting the audio from the video & put that label on top of the video frame.)


##################################################
#### Written By: SATYAKI DE ####
#### Written On: 17-Apr-2022 ####
#### Modified On 20-Apr-2022 ####
#### ####
#### Objective: This python class will ####
#### track the human emotions after splitting ####
#### the audio from the video & put that ####
#### label on top of the video frame. ####
#### ####
##################################################
from imutils.video import FileVideoStream
from imutils.video import FPS
import numpy as np
import imutils
import time
import cv2
from clsConfig import clsConfig as cf
from deepface import DeepFace
import clsL as cl
import subprocess
import sys
import os
# Initiating Log class
l = cl.clsL()
class clsFaceEmotionDetect:
def __init__(self):
self.sep = str(cf.conf['SEP'])
self.Curr_Path = str(cf.conf['INIT_PATH'])
self.FileName = str(cf.conf['FILE_NAME'])
self.VideoFileExtn = str(cf.conf['VIDEO_FILE_EXTN'])
self.ImageFileExtn = str(cf.conf['IMAGE_FILE_EXTN'])
def convert_video_to_audio_ffmpeg(self, video_file, output_ext="mp3"):
try:
"""Converts video to audio directly using `ffmpeg` command
with the help of subprocess module"""
filename, ext = os.path.splitext(video_file)
subprocess.call(["ffmpeg", "-y", "-i", video_file, f"{filename}.{output_ext}"],
stdout=subprocess.DEVNULL,
stderr=subprocess.STDOUT)
return 0
except Exception as e:
x = str(e)
print('Error: ', x)
return 1
def readEmotion(self, debugInd, var):
try:
sep = self.sep
Curr_Path = self.Curr_Path
FileName = self.FileName
VideoFileExtn = self.VideoFileExtn
ImageFileExtn = self.ImageFileExtn
font = cv2.FONT_HERSHEY_SIMPLEX
# Load Video
videoFile = Curr_Path + sep + 'Video' + sep + FileName + VideoFileExtn
temp_path = Curr_Path + sep + 'Temp' + sep
# Extracting the audio from the source video
x = self.convert_video_to_audio_ffmpeg(videoFile)
if x == 0:
print('Successfully Audio extracted from the source file!')
else:
print('Failed to extract the source audio!')
# Loading the haarcascade xml class
faceCascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
# start the file video stream thread and allow the buffer to
# start to fill
print("[INFO] Starting video file thread…")
fvs = FileVideoStream(videoFile).start()
time.sleep(1.0)
cnt = 0
# start the FPS timer
fps = FPS().start()
try:
# loop over frames from the video file stream
while fvs.more():
cnt += 1
# grab the frame from the threaded video file stream, resize
# it, and convert it to grayscale (while still retaining 3
# channels)
try:
frame = fvs.read()
except Exception as e:
x = str(e)
print('Error: ', x)
frame = imutils.resize(frame, width=720)
cv2.imshow("Gonoshotru – Source", frame)
# Enforce Detection to False will continue the sequence even when there is no face
result = DeepFace.analyze(frame, enforce_detection=False, actions = ['emotion'])
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
frame = np.dstack([frame, frame, frame])
faces = faceCascade.detectMultiScale(image=frame, scaleFactor=1.1, minNeighbors=4, minSize=(80,80), flags=cv2.CASCADE_SCALE_IMAGE)
# Draw a rectangle around the face
for (x, y, w, h) in faces:
cv2.rectangle(frame, (x, y), (x + w, y + h), (0,255,0), 2)
# Use puttext method for inserting live emotion on video
cv2.putText(frame, result['dominant_emotion'], (50,390), font, 3, (0,0,255), 2, cv2.LINE_4)
# display the size of the queue on the frame
#cv2.putText(frame, "Queue Size: {}".format(fvs.Q.qsize()), (10, 30), font, 0.6, (0, 255, 0), 2)
cv2.imwrite(temp_path+'frame-' + str(cnt) + ImageFileExtn, frame)
# show the frame and update the FPS counter
cv2.imshow("Gonoshotru – Emotional Analysis", frame)
fps.update()
if cv2.waitKey(2) & 0xFF == ord('q'):
break
except Exception as e:
x = str(e)
print('Error: ', x)
print('No more frame exists!')
# stop the timer and display FPS information
fps.stop()
print("[INFO] Elasped Time: {:.2f}".format(fps.elapsed()))
print("[INFO] Approx. FPS: {:.2f}".format(fps.fps()))
# do a bit of cleanup
cv2.destroyAllWindows()
fvs.stop()
return 0
except Exception as e:
x = str(e)
print('Error: ', x)
return 1

Key snippets from the above scripts –

def convert_video_to_audio_ffmpeg(self, video_file, output_ext="mp3"):
    try:
        """Converts video to audio directly using `ffmpeg` command
        with the help of subprocess module"""
        filename, ext = os.path.splitext(video_file)
        subprocess.call(["ffmpeg", "-y", "-i", video_file, f"{filename}.{output_ext}"],
                        stdout=subprocess.DEVNULL,
                        stderr=subprocess.STDOUT)

        return 0
    except Exception as e:
        x = str(e)
        print('Error: ', x)

        return 1

The above snippet represents an Audio extraction function that will extract the audio from the source file & store it in the specified directory.

# Loading the haarcascade xml class
faceCascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')

Now, Loading is one of the best classes for face detection, which our applications require.

fvs = FileVideoStream(videoFile).start()

Using FileVideoStream will enable our application to process the video faster than cv2.VideoCapture() method.

# start the FPS timer
fps = FPS().start()

The application then invokes the FPS.Start() that will initiate the FPS timer.

# loop over frames from the video file stream
while fvs.more():

The application will check using fvs.more() to find the EOF of the video file. Until then, it will try to read individual frames.

try:
    frame = fvs.read()
except Exception as e:
    x = str(e)
    print('Error: ', x)

The application will read individual frames. In case of any issue, it will capture the correct error without terminating the main program at the beginning. This exception strategy is beneficial when there is no longer any frame to read & yet due to the end frame issue, the entire application throws an error.

frame = imutils.resize(frame, width=720)
cv2.imshow("Gonoshotru - Source", frame)

At this point, the application is resizing the frame for better resolution & performance. Furthermore, identify this video feed as a source.

# Enforce Detection to False will continue the sequence even when there is no face
result = DeepFace.analyze(frame, enforce_detection=False, actions = ['emotion'])

Finally, the application has used the deepface machine-learning API to analyze the subject face & trying to predict its emotions.

frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
frame = np.dstack([frame, frame, frame])

faces = faceCascade.detectMultiScale(image=frame, scaleFactor=1.1, minNeighbors=4, minSize=(80,80), flags=cv2.CASCADE_SCALE_IMAGE)

detectMultiScale function can use to detect the faces. This function will return a rectangle with coordinates (x, y, w, h) around the detected face.

It takes three common arguments — the input image, scaleFactor, and minNeighbours.

scaleFactor specifies how much the image size reduces with each scale. There may be more faces near the camera in a group photo than others. Naturally, such faces would appear more prominent than the ones behind. This factor compensates for that.

minNeighbours specifies how many neighbors each candidate rectangle should have to retain. One may have to tweak these values to get the best results. This parameter specifies the number of neighbors a rectangle should have to be called a face.

# Draw a rectangle around the face
for (x, y, w, h) in faces:
    cv2.rectangle(frame, (x, y), (x + w, y + h), (0,255,0), 2)

As discussed above, the application is now calculating the square’s boundary after receiving the values of x, y, w, & h.

# Use puttext method for inserting live emotion on video
cv2.putText(frame, result['dominant_emotion'], (50,390), font, 3, (0,0,255), 2, cv2.LINE_4)

Finally, capture the dominant emotion from the deepface API & post it on top of the target video.

# display the size of the queue on the frame
cv2.imwrite(temp_path+'frame-' + str(cnt) + ImageFileExtn, frame)

# show the frame and update the FPS counter
cv2.imshow("Gonoshotru - Emotional Analysis", frame)
fps.update()

Also, writing individual frames into a temporary folder, where later they will be consumed & mixed with the source audio.

if cv2.waitKey(2) & 0xFF == ord('q'):
    break

At any given point, if the user wants to quit, the above snippet will allow them by simply pressing either the escape-button or ‘q’-button from the keyboard.

  • clsVideoPlay.py (This script will play the video along with audio in sync.)


###############################################
#### Updated By: SATYAKI DE ####
#### Updated On: 17-Apr-2022 ####
#### ####
#### Objective: This script will play the ####
#### video along with audio in sync. ####
#### ####
###############################################
import os
import platform as pl
import cv2
import numpy as np
import glob
import re
import ffmpeg
import time
from clsConfig import clsConfig as cf
from ffpyplayer.player import MediaPlayer
import logging
os_det = pl.system()
if os_det == "Windows":
sep = '\\'
else:
sep = '/'
class clsVideoPlay:
def __init__(self):
self.fileNmFin = str(cf.conf['FILE_NAME'])
self.final_path = str(cf.conf['FINAL_PATH'])
self.title = str(cf.conf['TITLE'])
self.VideoFileExtn = str(cf.conf['VIDEO_FILE_EXTN'])
def videoP(self, file):
try:
cap = cv2.VideoCapture(file)
player = MediaPlayer(file)
start_time = time.time()
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
_, val = player.get_frame(show=False)
if val == 'eof':
break
cv2.imshow(file, frame)
elapsed = (time.time() start_time) * 1000 # msec
play_time = int(cap.get(cv2.CAP_PROP_POS_MSEC))
sleep = max(1, int(play_time elapsed))
if cv2.waitKey(sleep) & 0xFF == ord("q"):
break
player.close_player()
cap.release()
cv2.destroyAllWindows()
return 0
except Exception as e:
x = str(e)
print('Error: ', x)
return 1
def stream(self, dInd, var):
try:
VideoFileExtn = self.VideoFileExtn
fileNmFin = self.fileNmFin + VideoFileExtn
final_path = self.final_path
title = self.title
FullFileName = final_path + fileNmFin
ret = self.videoP(FullFileName)
if ret == 0:
print('Successfully Played the Video!')
return 0
else:
return 1
except Exception as e:
x = str(e)
print('Error: ', x)
return 1

view raw

clsVideoPlay.py

hosted with ❤ by GitHub

Let us explore the key snippet –

cap = cv2.VideoCapture(file)
player = MediaPlayer(file)

In the above snippet, the application first reads the video & at the same time, it will create an instance of the MediaPlayer.

play_time = int(cap.get(cv2.CAP_PROP_POS_MSEC))

The application uses cv2.CAP_PROP_POS_MSEC to synchronize video and audio.

  • peopleEmotionRead.py (This is the main calling python script that will invoke the class to initiate the model to read the real-time human emotions from video.)


##################################################
#### Written By: SATYAKI DE ####
#### Written On: 17-Jan-2022 ####
#### Modified On 20-Apr-2022 ####
#### ####
#### Objective: This is the main calling ####
#### python script that will invoke the ####
#### clsFaceEmotionDetect class to initiate ####
#### the model to read the real-time ####
#### human emotions from video or even from ####
#### Web-CAM & predict it continuously. ####
##################################################
# We keep the setup code in a different class as shown below.
import clsFaceEmotionDetect as fed
import clsFrame2Video as fv
import clsVideoPlay as vp
from clsConfig import clsConfig as cf
import datetime
import logging
###############################################
### Global Section ###
###############################################
# Instantiating all the three classes
x1 = fed.clsFaceEmotionDetect()
x2 = fv.clsFrame2Video()
x3 = vp.clsVideoPlay()
###############################################
### End of Global Section ###
###############################################
def main():
try:
# Other useful variables
debugInd = 'Y'
var = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
var1 = datetime.datetime.now()
print('Start Time: ', str(var))
# End of useful variables
# Initiating Log Class
general_log_path = str(cf.conf['LOG_PATH'])
# Enabling Logging Info
logging.basicConfig(filename=general_log_path + 'restoreVideo.log', level=logging.INFO)
print('Started Capturing Real-Time Human Emotions!')
# Execute all the pass
r1 = x1.readEmotion(debugInd, var)
r2 = x2.convert2Vid(debugInd, var)
r3 = x3.stream(debugInd, var)
if ((r1 == 0) and (r2 == 0) and (r3 == 0)):
print('Successfully identified human emotions!')
else:
print('Failed to identify the human emotions!')
var2 = datetime.datetime.now()
c = var2 var1
minutes = c.total_seconds() / 60
print('Total difference in minutes: ', str(minutes))
print('End Time: ', str(var1))
except Exception as e:
x = str(e)
print('Error: ', x)
if __name__ == "__main__":
main()

The key-snippet from the above script are as follows –

# Instantiating all the three classes

x1 = fed.clsFaceEmotionDetect()
x2 = fv.clsFrame2Video()
x3 = vp.clsVideoPlay()

As one can see from the above snippet, all the major classes are instantiated & loaded into the memory.

# Execute all the pass
r1 = x1.readEmotion(debugInd, var)
r2 = x2.convert2Vid(debugInd, var)
r3 = x3.stream(debugInd, var)

All the responses are captured into the corresponding variables, which later check for success status.


Let us capture & compare the emotions in a screenshot for better understanding –

Emotion Analysis

So, one can see that most of the frames from the video & above-posted frame correctly identify the human emotions.


FOLDER STRUCTURE:

Here is the folder structure that contains all the files & directories in MAC O/S –

Directory

So, we’ve done it.

You will get the complete codebase in the following Github link.

If you want to know more about this legendary director & his famous work, please visit the following link.

I’ll bring some more exciting topic in the coming days from the Python verse. Please share & subscribe my post & let me know your feedback.

Till then, Happy Avenging! 😀

Note: All the data & scenario posted here are representational data & scenarios & available over the internet & for educational purpose only. Some of the images (except my photo) that we’ve used are available over the net. We don’t claim the ownership of these images. There is an always room for improvement & especially the prediction quality.

Neural prophet – The enhanced version of Facebook’s forecasting API

Hi Team,

Today, I’ll be explaining the enhancement of one of the previous posts. I know that I’ve shared the fascinating API named prophet-API, which Facebook developed. One can quickly get more accurate predictions with significantly fewer data points. (If you want to know more about that post, please click on the following link.)

However, there is another enhancement on top of that API, which is more accurate. However, one needs to know – when they should consider using it. So, today, we’ll be talking about the neural prophet API.

But, before we start digging deep, why don’t we view the demo first?

Demo

Let’s visit a diagram. That way, you can understand where you can use it. Also, I’ll be sharing some of the links from the original site for better information mining.

Source: Neural Prophet (Official Site)

As one can see, this API is trying to bridge between the different groups & it enables the time-series computation efficiently.

WHERE TO USE:

Let’s visit another diagram from the same source.

Source: Neural Prophet (Official Site)

So, I hope these two pictures give you a clear picture & relatively set your expectations to more ground reality.


ARCHITECTURE:

Let us explore the architecture –

Architecture Diagram

As one can see, the application is processing IoT data & creating a historical data volume, out of which the model is gradually predicting correct outcomes with higher confidence.

For more information on this API, please visit the following link.


CODE:

Let’s explore the essential scripts here.

  1. clsConfig.py (Configuration file for the entire application.)


################################################
#### Written By: SATYAKI DE ####
#### Written On: 15-May-2020 ####
#### Modified On: 28-Dec-2021 ####
#### ####
#### Objective: This script is a config ####
#### file, contains all the keys for ####
#### Machine-Learning & streaming dashboard.####
#### ####
################################################
import os
import platform as pl
import pandas as p
class clsConfig(object):
Curr_Path = os.path.dirname(os.path.realpath(__file__))
os_det = pl.system()
if os_det == "Windows":
sep = '\\'
else:
sep = '/'
conf = {
'APP_ID': 1,
'ARCH_DIR': Curr_Path + sep + 'arch' + sep,
'PROFILE_PATH': Curr_Path + sep + 'profile' + sep,
'LOG_PATH': Curr_Path + sep + 'log' + sep,
'REPORT_PATH': Curr_Path + sep + 'report',
'FILE_NAME': Curr_Path + sep + 'Data' + sep + 'thermostatIoT.csv',
'SRC_PATH': Curr_Path + sep + 'data' + sep,
'APP_DESC_1': 'Old Video Enhancement!',
'DEBUG_IND': 'N',
'INIT_PATH': Curr_Path,
'SUBDIR': 'data',
'SEP': sep,
'testRatio':0.2,
'valRatio':0.2,
'epochsVal':8,
'sleepTime':3,
'sleepTime1':6,
'factorVal':0.2,
'learningRateVal':0.001,
'event1': {
'event': 'SummerEnd',
'ds': p.to_datetime([
'2010-04-01', '2011-04-01', '2012-04-01',
'2013-04-01', '2014-04-01', '2015-04-01',
'2016-04-01', '2017-04-01', '2018-04-01',
'2019-04-01', '2020-04-01', '2021-04-01',
]),},
'event2': {
'event': 'LongWeekend',
'ds': p.to_datetime([
'2010-12-01', '2011-12-01', '2012-12-01',
'2013-12-01', '2014-12-01', '2015-12-01',
'2016-12-01', '2017-12-01', '2018-12-01',
'2019-12-01', '2020-12-01', '2021-12-01',
]),}
}

view raw

clsConfig.py

hosted with ❤ by GitHub

The only key snippet would be passing a nested json element with pandas dataframe in the following lines –

'event1': {
    'event': 'SummerEnd',
    'ds': p.to_datetime([
        '2010-04-01', '2011-04-01', '2012-04-01',
        '2013-04-01', '2014-04-01', '2015-04-01',
        '2016-04-01', '2017-04-01', '2018-04-01',
        '2019-04-01', '2020-04-01', '2021-04-01',
    ]),},
'event2': {
    'event': 'LongWeekend',
    'ds': p.to_datetime([
        '2010-12-01', '2011-12-01', '2012-12-01',
        '2013-12-01', '2014-12-01', '2015-12-01',
        '2016-12-01', '2017-12-01', '2018-12-01',
        '2019-12-01', '2020-12-01', '2021-12-01',
    ]),}

As one can see, our application is equipped with the events to predict our use case better.

2. clsPredictIonIoT.py (Main class file, which will invoke neural-prophet forecast for the entire application.)


################################################
#### Written By: SATYAKI DE ####
#### Written On: 19-Feb-2022 ####
#### Modified On 21-Feb-2022 ####
#### ####
#### Objective: This python script will ####
#### perform the neural-prophet forecast ####
#### based on the historical input received ####
#### from IoT device. ####
################################################
# We keep the setup code in a different class as shown below.
from clsConfig import clsConfig as cf
import psutil
import os
import pandas as p
import json
import datetime
from neuralprophet import NeuralProphet, set_log_level
from neuralprophet import set_random_seed
from neuralprophet.benchmark import Dataset, NeuralProphetModel, SimpleExperiment, CrossValidationExperiment
import time
import clsL as cl
import matplotlib.pyplot as plt
###############################################
### Global Section ###
###############################################
# Initiating Log class
l = cl.clsL()
set_random_seed(10)
set_log_level("ERROR", "INFO")
###############################################
### End of Global Section ###
###############################################
class clsPredictIonIoT:
def __init__(self):
self.sleepTime = int(cf.conf['sleepTime'])
self.event1 = cf.conf['event1']
self.event2 = cf.conf['event2']
def forecastSeries(self, inputDf):
try:
sleepTime = self.sleepTime
event1 = self.event1
event2 = self.event2
df = inputDf
print('IoTData: ')
print(df)
## user specified events
# history events
SummerEnd = p.DataFrame(event1)
LongWeekend = p.DataFrame(event2)
dfEvents = p.concat((SummerEnd, LongWeekend))
# NeuralProphet Object
# Adding events
m = NeuralProphet(loss_func="MSE")
# set the model to expect these events
m = m.add_events(["SummerEnd", "LongWeekend"])
# create the data df with events
historyDf = m.create_df_with_events(df, dfEvents)
# fit the model
metrics = m.fit(historyDf, freq="D")
# forecast with events known ahead
futureDf = m.make_future_dataframe(df=historyDf, events_df=dfEvents, periods=365, n_historic_predictions=len(df))
forecastDf = m.predict(df=futureDf)
events = forecastDf[(forecastDf['event_SummerEnd'].abs() + forecastDf['event_LongWeekend'].abs()) > 0]
events.tail()
## plotting forecasts
fig = m.plot(forecastDf)
## plotting components
figComp = m.plot_components(forecastDf)
## plotting parameters
figParam = m.plot_parameters()
#################################
#### Train & Test Evaluation ####
#################################
m = NeuralProphet(seasonality_mode= "multiplicative", learning_rate = 0.1)
dfTrain, dfTest = m.split_df(df=df, freq="MS", valid_p=0.2)
metricsTrain = m.fit(df=dfTrain, freq="MS")
metricsTest = m.test(df=dfTest)
print('metricsTest:: ')
print(metricsTest)
# Predict Into Future
metricsTrain2 = m.fit(df=df, freq="MS")
futureDf = m.make_future_dataframe(df, periods=24, n_historic_predictions=48)
forecastDf = m.predict(futureDf)
fig = m.plot(forecastDf)
# Visualize training
m = NeuralProphet(seasonality_mode="multiplicative", learning_rate=0.1)
dfTrain, dfTest = m.split_df(df=df, freq="MS", valid_p=0.2)
metrics = m.fit(df=dfTrain, freq="MS", validation_df=dfTest, plot_live_loss=True)
print('Tail of Metrics: ')
print(metrics.tail(1))
######################################
#### Time-series Cross-Validation ####
######################################
METRICS = ['SmoothL1Loss', 'MAE', 'RMSE']
params = {"seasonality_mode": "multiplicative", "learning_rate": 0.1}
folds = NeuralProphet(**params).crossvalidation_split_df(df, freq="MS", k=5, fold_pct=0.20, fold_overlap_pct=0.5)
metricsTrain = p.DataFrame(columns=METRICS)
metricsTest = p.DataFrame(columns=METRICS)
for dfTrain, dfTest in folds:
m = NeuralProphet(**params)
train = m.fit(df=dfTrain, freq="MS")
test = m.test(df=dfTest)
metricsTrain = metricsTrain.append(train[METRICS].iloc[1])
metricsTest = metricsTest.append(test[METRICS].iloc[1])
print('Stats: ')
dfStats = metricsTest.describe().loc[["mean", "std", "min", "max"]]
print(dfStats)
####################################
#### Using Benchmark Framework ####
####################################
print('Starting extracting result set for Benchmark:')
ts = Dataset(df = df, name = "thermoStatsCPUUsage", freq = "MS")
params = {"seasonality_mode": "multiplicative"}
exp = SimpleExperiment(
model_class=NeuralProphetModel,
params=params,
data=ts,
metrics=["MASE", "RMSE"],
test_percentage=25,
)
resultTrain, resultTest = exp.run()
print('Test result for Benchmark:: ')
print(resultTest)
print('Finished extracting result test for Benchmark!')
####################################
#### Cross Validate Experiment ####
####################################
print('Starting extracting result set for Corss-Validation:')
ts = Dataset(df = df, name = "thermoStatsCPUUsage", freq = "MS")
params = {"seasonality_mode": "multiplicative"}
exp_cv = CrossValidationExperiment(
model_class=NeuralProphetModel,
params=params,
data=ts,
metrics=["MASE", "RMSE"],
test_percentage=10,
num_folds=3,
fold_overlap_pct=0,
)
resultTrain, resultTest = exp_cv.run()
print('resultTest for Cross Validation:: ')
print(resultTest)
print('Finished extracting result test for Corss-Validation!')
######################################################
#### 3-Phase Train, Test & Validation Experiment ####
######################################################
print('Starting 3-phase Train, Test & Validation Experiment!')
m = NeuralProphet(seasonality_mode= "multiplicative", learning_rate = 0.1)
# create a test holdout set:
dfTrainVal, dfTest = m.split_df(df=df, freq="MS", valid_p=0.2)
# create a validation holdout set:
dfTrain, dfVal = m.split_df(df=dfTrainVal, freq="MS", valid_p=0.2)
# fit a model on training data and evaluate on validation set.
metricsTrain1 = m.fit(df=dfTrain, freq="MS")
metrics_val = m.test(df=dfVal)
# refit model on training and validation data and evaluate on test set.
metricsTrain2 = m.fit(df=dfTrainVal, freq="MS")
metricsTest = m.test(df=dfTest)
metricsTrain1["split"] = "train1"
metricsTrain2["split"] = "train2"
metrics_val["split"] = "validate"
metricsTest["split"] = "test"
metrics_stat = metricsTrain1.tail(1).append([metricsTrain2.tail(1), metrics_val, metricsTest]).drop(columns=['RegLoss'])
print('Metrics Stat:: ')
print(metrics_stat)
# Train, Cross-Validate and Cross-Test evaluation
METRICS = ['SmoothL1Loss', 'MAE', 'RMSE']
params = {"seasonality_mode": "multiplicative", "learning_rate": 0.1}
crossVal, crossTest = NeuralProphet(**params).double_crossvalidation_split_df(df, freq="MS", k=5, valid_pct=0.10, test_pct=0.10)
metricsTrain1 = p.DataFrame(columns=METRICS)
metrics_val = p.DataFrame(columns=METRICS)
for dfTrain1, dfVal in crossVal:
m = NeuralProphet(**params)
train1 = m.fit(df=dfTrain, freq="MS")
val = m.test(df=dfVal)
metricsTrain1 = metricsTrain1.append(train1[METRICS].iloc[1])
metrics_val = metrics_val.append(val[METRICS].iloc[1])
metricsTrain2 = p.DataFrame(columns=METRICS)
metricsTest = p.DataFrame(columns=METRICS)
for dfTrain2, dfTest in crossTest:
m = NeuralProphet(**params)
train2 = m.fit(df=dfTrain2, freq="MS")
test = m.test(df=dfTest)
metricsTrain2 = metricsTrain2.append(train2[METRICS].iloc[1])
metricsTest = metricsTest.append(test[METRICS].iloc[1])
mtrain2 = metricsTrain2.describe().loc[["mean", "std"]]
print('Train 2 Stats:: ')
print(mtrain2)
mval = metrics_val.describe().loc[["mean", "std"]]
print('Validation Stats:: ')
print(mval)
mtest = metricsTest.describe().loc[["mean", "std"]]
print('Test Stats:: ')
print(mtest)
return 0
except Exception as e:
x = str(e)
print('Error: ', x)
return 1

Some of the key snippets that I will discuss here are as follows –

## user specified events
# history events
SummerEnd = p.DataFrame(event1)
LongWeekend = p.DataFrame(event2)

dfEvents = p.concat((SummerEnd, LongWeekend))

# NeuralProphet Object
# Adding events
m = NeuralProphet(loss_func="MSE")

# set the model to expect these events
m = m.add_events(["SummerEnd", "LongWeekend"])

# create the data df with events
historyDf = m.create_df_with_events(df, dfEvents)

Creating & adding events into your model will allow it to predict based on the milestones.

# fit the model
metrics = m.fit(historyDf, freq="D")

# forecast with events known ahead
futureDf = m.make_future_dataframe(df=historyDf, events_df=dfEvents, periods=365, n_historic_predictions=len(df))
forecastDf = m.predict(df=futureDf)

events = forecastDf[(forecastDf['event_SummerEnd'].abs() + forecastDf['event_LongWeekend'].abs()) > 0]
events.tail()

## plotting forecasts
fig = m.plot(forecastDf)

## plotting components
figComp = m.plot_components(forecastDf)

## plotting parameters
figParam = m.plot_parameters()

Based on the daily/monthly collected data, our algorithm tries to plot the data points & predict a future trend, which will look like this –

Future Data Points

From the above diagram, we can conclude that the CPU’s trend has been growing day by day since the beginning. However, there are some events when we can see a momentary drop in requirements due to the climate & holidays. During those times, either people are not using them or are not at home.

Apart from that, I’ve demonstrated the use of a benchwork framework, & splitting the data into Train, Test & Validation & captured the RMSE values. I would request you to go through that & post any questions if you have any.

You can witness the train & validation datasets & visualize them in the standard manner, which will look something like –

Demo

3. readingIoT.py (Main invoking script.)


###############################################
#### Written By: SATYAKI DE ####
#### Written On: 21-Feb-2022 ####
#### Modified On 21-Feb-2022 ####
#### ####
#### Objective: This python script will ####
#### invoke the main class to use the ####
#### stored historical IoT data stored & ####
#### then transform, cleanse, predict & ####
#### analyze the data points into more ####
#### meaningful decision-making insights. ####
###############################################
# We keep the setup code in a different class as shown below.
from clsConfig import clsConfig as cf
import datetime
import logging
import pandas as p
import clsPredictIonIoT as cpt
###############################################
### Global Section ###
###############################################
sep = str(cf.conf['SEP'])
Curr_Path = str(cf.conf['INIT_PATH'])
fileName = str(cf.conf['FILE_NAME'])
###############################################
### End of Global Section ###
###############################################
def main():
try:
# Other useful variables
debugInd = 'Y'
var = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
var1 = datetime.datetime.now()
# Initiating Prediction class
x1 = cpt.clsPredictIonIoT()
print('Start Time: ', str(var))
# End of useful variables
# Initiating Log Class
general_log_path = str(cf.conf['LOG_PATH'])
# Enabling Logging Info
logging.basicConfig(filename=general_log_path + 'IoT_NeuralProphet.log', level=logging.INFO)
# Reading the source IoT data
iotData = p.read_csv(fileName)
df = iotData.rename(columns={'MonthlyDate': 'ds', 'AvgIoTCPUUsage': 'y'})[['ds', 'y']]
r1 = x1.forecastSeries(df)
if (r1 == 0):
print('Successfully IoT forecast predicted!')
else:
print('Failed to predict IoT forecast!')
var2 = datetime.datetime.now()
c = var2 var1
minutes = c.total_seconds() / 60
print('Total Run Time in minutes: ', str(minutes))
print('End Time: ', str(var1))
except Exception as e:
x = str(e)
print('Error: ', x)
if __name__ == "__main__":
main()

view raw

readingIoT.py

hosted with ❤ by GitHub

Here are some of the key snippets –

# Reading the source IoT data
iotData = p.read_csv(fileName)
df = iotData.rename(columns={'MonthlyDate': 'ds', 'AvgIoTCPUUsage': 'y'})[['ds', 'y']]

r1 = x1.forecastSeries(df)

if (r1 == 0):
    print('Successfully IoT forecast predicted!')
else:
    print('Failed to predict IoT forecast!')

var2 = datetime.datetime.now()

In those above lines, the main calling application is invoking the neural-forecasting class & passing the pandas dataframe containing IoT’s historical data to train its model.

For your information, here is the outcome of the run, when you invoke the main calling script –

Demo – Continue

FOLDER STRUCTURE:

Please find the folder structure as shown –

Directory Structure

So, we’ve done it.

You will get the complete codebase in the following Github link.

I’ll bring some more exciting topic in the coming days from the Python verse. Please share & subscribe my post & let me know your feedback.

Till then, Happy Avenging! 😀

Note: All the data & scenario posted here are representational data & scenarios & available over the internet & for educational purpose only. Some of the images (except my photo) that we’ve used are available over the net. We don’t claim the ownership of these images. There is an always room for improvement & especially the prediction quality.

Live visual reading using Convolutional Neural Network (CNN) through Python-based machine-learning application.

This week we’re planning to touch on one of the exciting posts of visually reading characters from WebCAM & predict the letters using CNN methods. Before we dig deep, why don’t we see the demo run first?

Demo

Isn’t it fascinating? As we can see, the computer can record events and read like humans. And, thanks to the brilliant packages available in Python, which can help us predict the correct letter out of an Image.


What do we need to test it out?

  1. Preferably an external WebCAM.
  2. A moderate or good Laptop to test out this.
  3. Python 
  4. And a few other packages that we’ll mention next block.

What Python packages do we need?

Some of the critical packages that we must need to test out this application are –

cmake==3.22.1
dlib==19.19.0
face-recognition==1.3.0
face-recognition-models==0.3.0
imutils==0.5.3
jsonschema==4.4.0
keras==2.7.0
Keras-Preprocessing==1.1.2
matplotlib==3.5.1
matplotlib-inline==0.1.3
oauthlib==3.1.1
opencv-contrib-python==4.1.2.30
opencv-contrib-python-headless==4.4.0.46
opencv-python==4.5.5.62
opencv-python-headless==4.5.5.62
pickleshare==0.7.5
Pillow==9.0.0
python-dateutil==2.8.2
requests==2.27.1
requests-oauthlib==1.3.0
scikit-image==0.19.1
scikit-learn==1.0.2
tensorboard==2.7.0
tensorboard-data-server==0.6.1
tensorboard-plugin-wit==1.8.1
tensorflow==2.7.0
tensorflow-estimator==2.7.0
tensorflow-io-gcs-filesystem==0.23.1
tqdm==4.62.3

What is CNN?

In deep learning, a convolutional neural network (CNN/ConvNet) is a class of deep neural networks most commonly applied to analyze visual imagery.

Different Steps of CNN

We can understand from the above picture that a CNN generally takes an image as input. The neural network analyzes each pixel separately. The weights and biases of the model are then tweaked to detect the desired letters (In our use case) from the image. Like other algorithms, the data also has to pass through pre-processing stage. However, a CNN needs relatively less pre-processing than most other Deep Learning algorithms.

If you want to know more about this, there is an excellent article on CNN with some on-point animations explaining this concept. Please read it here.

Where do we get the data sets for our testing?

For testing, we are fortunate enough to have Kaggle with us. We have received a wide variety of sample data, which you can get from here.


Our use-case:

Architecture

From the above diagram, one can see that the python application will consume a live video feed of any random letters (both printed & handwritten) & predict the character as part of the machine learning model that we trained.


Code:

  1. clsConfig.py (Configuration file for the entire application.)


################################################
#### Written By: SATYAKI DE ####
#### Written On: 15-May-2020 ####
#### Modified On: 28-Dec-2021 ####
#### ####
#### Objective: This script is a config ####
#### file, contains all the keys for ####
#### Machine-Learning & streaming dashboard.####
#### ####
################################################
import os
import platform as pl
class clsConfig(object):
Curr_Path = os.path.dirname(os.path.realpath(__file__))
os_det = pl.system()
if os_det == "Windows":
sep = '\\'
else:
sep = '/'
conf = {
'APP_ID': 1,
'ARCH_DIR': Curr_Path + sep + 'arch' + sep,
'PROFILE_PATH': Curr_Path + sep + 'profile' + sep,
'LOG_PATH': Curr_Path + sep + 'log' + sep,
'REPORT_PATH': Curr_Path + sep + 'report',
'FILE_NAME': Curr_Path + sep + 'Data' + sep + 'A_Z_Handwritten_Data.csv',
'SRC_PATH': Curr_Path + sep + 'data' + sep,
'APP_DESC_1': 'Old Video Enhancement!',
'DEBUG_IND': 'N',
'INIT_PATH': Curr_Path,
'SUBDIR': 'data',
'SEP': sep,
'testRatio':0.2,
'valRatio':0.2,
'epochsVal':8,
'activationType':'relu',
'activationType2':'softmax',
'numOfClasses':26,
'kernelSize'🙁3, 3),
'poolSize'🙁2, 2),
'filterVal1':32,
'filterVal2':64,
'filterVal3':128,
'stridesVal':2,
'monitorVal':'val_loss',
'paddingVal1':'same',
'paddingVal2':'valid',
'reshapeVal':28,
'reshapeVal1'🙁28,28),
'patienceVal1':1,
'patienceVal2':2,
'sleepTime':3,
'sleepTime1':6,
'factorVal':0.2,
'learningRateVal':0.001,
'minDeltaVal':0,
'minLrVal':0.0001,
'verboseFlag':0,
'modeInd':'auto',
'shuffleVal':100,
'DenkseVal1':26,
'DenkseVal2':64,
'DenkseVal3':128,
'predParam':9,
'word_dict':{0:'A',1:'B',2:'C',3:'D',4:'E',5:'F',6:'G',7:'H',8:'I',9:'J',10:'K',11:'L',12:'M',13:'N',14:'O',15:'P',16:'Q',17:'R',18:'S',19:'T',20:'U',21:'V',22:'W',23:'X', 24:'Y',25:'Z'},
'width':640,
'height':480,
'imgSize': (32,32),
'threshold': 0.45,
'imgDimension': (400, 440),
'imgSmallDim': (7, 7),
'imgMidDim': (28, 28),
'reshapeParam1':1,
'reshapeParam2':28,
'colorFeed'🙁0,0,130),
'colorPredict'🙁0,25,255)
}

view raw

clsConfig.py

hosted with ❤ by GitHub

Important parameters that we need to follow from the above snippets are –

'testRatio':0.2,
'valRatio':0.2,
'epochsVal':8,
'activationType':'relu',
'activationType2':'softmax',
'numOfClasses':26,
'kernelSize':(3, 3),
'poolSize':(2, 2),
'word_dict':{0:'A',1:'B',2:'C',3:'D',4:'E',5:'F',6:'G',7:'H',8:'I',9:'J',10:'K',11:'L',12:'M',13:'N',14:'O',15:'P',16:'Q',17:'R',18:'S',19:'T',20:'U',21:'V',22:'W',23:'X', 24:'Y',25:'Z'},

Since we have 26 letters, we have classified it as 26 in the numOfClasses.

Since we are talking about characters, we had to come up with a process of identifying each character as numbers & then processing our entire logic. Hence, the above parameter named word_dict captured all the characters in a python dictionary & stored them. Moreover, the application translates the final number output to more appropriate characters as the prediction.

2. clsAlphabetReading.py (Main training class to teach the model to predict alphabets from visual reader.)


###############################################
#### Written By: SATYAKI DE ####
#### Written On: 17-Jan-2022 ####
#### Modified On 17-Jan-2022 ####
#### ####
#### Objective: This python script will ####
#### teach & perfect the model to read ####
#### visual alphabets using Convolutional ####
#### Neural Network (CNN). ####
###############################################
from keras.datasets import mnist
import matplotlib.pyplot as plt
import cv2
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Flatten, Conv2D, MaxPool2D, Dropout
from tensorflow.keras.optimizers import SGD, Adam
from keras.callbacks import ReduceLROnPlateau, EarlyStopping
from keras.utils.np_utils import to_categorical
import pandas as p
import numpy as np
from sklearn.model_selection import train_test_split
from keras.utils import np_utils
import matplotlib.pyplot as plt
from tqdm import tqdm_notebook
from sklearn.utils import shuffle
import pickle
import os
import platform as pl
from clsConfig import clsConfig as cf
class clsAlphabetReading:
def __init__(self):
self.sep = str(cf.conf['SEP'])
self.Curr_Path = str(cf.conf['INIT_PATH'])
self.fileName = str(cf.conf['FILE_NAME'])
self.testRatio = float(cf.conf['testRatio'])
self.valRatio = float(cf.conf['valRatio'])
self.epochsVal = int(cf.conf['epochsVal'])
self.activationType = str(cf.conf['activationType'])
self.activationType2 = str(cf.conf['activationType2'])
self.numOfClasses = int(cf.conf['numOfClasses'])
self.kernelSize = cf.conf['kernelSize']
self.poolSize = cf.conf['poolSize']
self.filterVal1 = int(cf.conf['filterVal1'])
self.filterVal2 = int(cf.conf['filterVal2'])
self.filterVal3 = int(cf.conf['filterVal3'])
self.stridesVal = int(cf.conf['stridesVal'])
self.monitorVal = str(cf.conf['monitorVal'])
self.paddingVal1 = str(cf.conf['paddingVal1'])
self.paddingVal2 = str(cf.conf['paddingVal2'])
self.reshapeVal = int(cf.conf['reshapeVal'])
self.reshapeVal1 = cf.conf['reshapeVal1']
self.patienceVal1 = int(cf.conf['patienceVal1'])
self.patienceVal2 = int(cf.conf['patienceVal2'])
self.sleepTime = int(cf.conf['sleepTime'])
self.sleepTime1 = int(cf.conf['sleepTime1'])
self.factorVal = float(cf.conf['factorVal'])
self.learningRateVal = float(cf.conf['learningRateVal'])
self.minDeltaVal = int(cf.conf['minDeltaVal'])
self.minLrVal = float(cf.conf['minLrVal'])
self.verboseFlag = int(cf.conf['verboseFlag'])
self.modeInd = str(cf.conf['modeInd'])
self.shuffleVal = int(cf.conf['shuffleVal'])
self.DenkseVal1 = int(cf.conf['DenkseVal1'])
self.DenkseVal2 = int(cf.conf['DenkseVal2'])
self.DenkseVal3 = int(cf.conf['DenkseVal3'])
self.predParam = int(cf.conf['predParam'])
self.word_dict = cf.conf['word_dict']
def applyCNN(self, X_Train, Y_Train_Catg, X_Validation, Y_Validation_Catg):
try:
testRatio = self.testRatio
epochsVal = self.epochsVal
activationType = self.activationType
activationType2 = self.activationType2
numOfClasses = self.numOfClasses
kernelSize = self.kernelSize
poolSize = self.poolSize
filterVal1 = self.filterVal1
filterVal2 = self.filterVal2
filterVal3 = self.filterVal3
stridesVal = self.stridesVal
monitorVal = self.monitorVal
paddingVal1 = self.paddingVal1
paddingVal2 = self.paddingVal2
reshapeVal = self.reshapeVal
patienceVal1 = self.patienceVal1
patienceVal2 = self.patienceVal2
sleepTime = self.sleepTime
sleepTime1 = self.sleepTime1
factorVal = self.factorVal
learningRateVal = self.learningRateVal
minDeltaVal = self.minDeltaVal
minLrVal = self.minLrVal
verboseFlag = self.verboseFlag
modeInd = self.modeInd
shuffleVal = self.shuffleVal
DenkseVal1 = self.DenkseVal1
DenkseVal2 = self.DenkseVal2
DenkseVal3 = self.DenkseVal3
model = Sequential()
model.add(Conv2D(filters=filterVal1, kernel_size=kernelSize, activation=activationType, input_shape=(28,28,1)))
model.add(MaxPool2D(pool_size=poolSize, strides=stridesVal))
model.add(Conv2D(filters=filterVal2, kernel_size=kernelSize, activation=activationType, padding = paddingVal1))
model.add(MaxPool2D(pool_size=poolSize, strides=stridesVal))
model.add(Conv2D(filters=filterVal3, kernel_size=kernelSize, activation=activationType, padding = paddingVal2))
model.add(MaxPool2D(pool_size=poolSize, strides=stridesVal))
model.add(Flatten())
model.add(Dense(DenkseVal2,activation = activationType))
model.add(Dense(DenkseVal3,activation = activationType))
model.add(Dense(DenkseVal1,activation = activationType2))
model.compile(optimizer = Adam(learning_rate=learningRateVal), loss='categorical_crossentropy', metrics=['accuracy'])
reduce_lr = ReduceLROnPlateau(monitor=monitorVal, factor=factorVal, patience=patienceVal1, min_lr=minLrVal)
early_stop = EarlyStopping(monitor=monitorVal, min_delta=minDeltaVal, patience=patienceVal2, verbose=verboseFlag, mode=modeInd)
fittedModel = model.fit(X_Train, Y_Train_Catg, epochs=epochsVal, callbacks=[reduce_lr, early_stop], validation_data = (X_Validation,Y_Validation_Catg))
return (model, fittedModel)
except Exception as e:
x = str(e)
model = Sequential()
print('Error: ', x)
return (model, model)
def trainModel(self, debugInd, var):
try:
sep = self.sep
Curr_Path = self.Curr_Path
fileName = self.fileName
epochsVal = self.epochsVal
valRatio = self.valRatio
predParam = self.predParam
testRatio = self.testRatio
reshapeVal = self.reshapeVal
numOfClasses = self.numOfClasses
sleepTime = self.sleepTime
sleepTime1 = self.sleepTime1
shuffleVal = self.shuffleVal
reshapeVal1 = self.reshapeVal1
# Dictionary for getting characters from index values
word_dict = self.word_dict
print('File Name: ', str(fileName))
# Read the data
df_HW_Alphabet = p.read_csv(fileName).astype('float32')
# Sample Data
print('Sample Data: ')
print(df_HW_Alphabet.head())
# Split data the (x – Our data) & (y – the prdict label)
x = df_HW_Alphabet.drop('0',axis = 1)
y = df_HW_Alphabet['0']
# Reshaping the data in csv file to display as an image
X_Train, X_Test, Y_Train, Y_Test = train_test_split(x, y, test_size = testRatio)
X_Train, X_Validation, Y_Train, Y_Validation = train_test_split(X_Train, Y_Train, test_size = valRatio)
X_Train = np.reshape(X_Train.values, (X_Train.shape[0], reshapeVal, reshapeVal))
X_Test = np.reshape(X_Test.values, (X_Test.shape[0], reshapeVal, reshapeVal))
X_Validation = np.reshape(X_Validation.values, (X_Validation.shape[0], reshapeVal, reshapeVal))
print("Train Data Shape: ", X_Train.shape)
print("Test Data Shape: ", X_Test.shape)
print("Validation Data shape: ", X_Validation.shape)
# Plotting the number of alphabets in the dataset
Y_Train_Num = np.int0(y)
count = np.zeros(numOfClasses, dtype='int')
for i in Y_Train_Num:
count[i] +=1
alphabets = []
for i in word_dict.values():
alphabets.append(i)
fig, ax = plt.subplots(1,1, figsize=(7,7))
ax.barh(alphabets, count)
plt.xlabel("Number of elements ")
plt.ylabel("Alphabets")
plt.grid()
plt.show(block=False)
plt.pause(sleepTime)
plt.close()
# Shuffling the data
shuff = shuffle(X_Train[:shuffleVal])
# Model reshaping the training & test dataset
X_Train = X_Train.reshape(X_Train.shape[0],X_Train.shape[1],X_Train.shape[2],1)
print("Shape of Train Data: ", X_Train.shape)
X_Test = X_Test.reshape(X_Test.shape[0], X_Test.shape[1], X_Test.shape[2],1)
print("Shape of Test Data: ", X_Test.shape)
X_Validation = X_Validation.reshape(X_Validation.shape[0], X_Validation.shape[1], X_Validation.shape[2],1)
print("Shape of Validation data: ", X_Validation.shape)
# Converting the labels to categorical values
Y_Train_Catg = to_categorical(Y_Train, num_classes = numOfClasses, dtype='int')
print("Shape of Train Labels: ", Y_Train_Catg.shape)
Y_Test_Catg = to_categorical(Y_Test, num_classes = numOfClasses, dtype='int')
print("Shape of Test Labels: ", Y_Test_Catg.shape)
Y_Validation_Catg = to_categorical(Y_Validation, num_classes = numOfClasses, dtype='int')
print("Shape of validation labels: ", Y_Validation_Catg.shape)
model, history = self.applyCNN(X_Train, Y_Train_Catg, X_Validation, Y_Validation_Catg)
print('Model Summary: ')
print(model.summary())
# Displaying the accuracies & losses for train & validation set
print("Validation Accuracy :", history.history['val_accuracy'])
print("Training Accuracy :", history.history['accuracy'])
print("Validation Loss :", history.history['val_loss'])
print("Training Loss :", history.history['loss'])
# Displaying the Loss Graph
plt.figure(1)
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.legend(['training','validation'])
plt.title('Loss')
plt.xlabel('epoch')
plt.show(block=False)
plt.pause(sleepTime1)
plt.close()
# Dsiplaying the Accuracy Graph
plt.figure(2)
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.legend(['training','validation'])
plt.title('Accuracy')
plt.xlabel('epoch')
plt.show(block=False)
plt.pause(sleepTime1)
plt.close()
# Making the model to predict
pred = model.predict(X_Test[:predParam])
print('Test Details::')
print('X_Test: ', X_Test.shape)
print('Y_Test_Catg: ', Y_Test_Catg.shape)
try:
score = model.evaluate(X_Test, Y_Test_Catg, verbose=0)
print('Test Score = ', score[0])
print('Test Accuracy = ', score[1])
except Exception as e:
x = str(e)
print('Error: ', x)
# Displaying some of the test images & their predicted labels
fig, ax = plt.subplots(3,3, figsize=(8,9))
axes = ax.flatten()
for i in range(9):
axes[i].imshow(np.reshape(X_Test[i], reshapeVal1), cmap="Greys")
pred = word_dict[np.argmax(Y_Test_Catg[i])]
print('Prediction: ', pred)
axes[i].set_title("Test Prediction: " + pred)
axes[i].grid()
plt.show(block=False)
plt.pause(sleepTime1)
plt.close()
fileName = Curr_Path + sep + 'Model' + sep + 'model_trained_' + str(epochsVal) + '.p'
print('Model Name: ', str(fileName))
pickle_out = open(fileName, 'wb')
pickle.dump(model, pickle_out)
pickle_out.close()
return 0
except Exception as e:
x = str(e)
print('Error: ', x)
return 1

Some of the key snippets from the above scripts are –

x = df_HW_Alphabet.drop('0',axis = 1)
y = df_HW_Alphabet['0']

In the above snippet, we have split the data into images & their corresponding labels.

X_Train, X_Test, Y_Train, Y_Test = train_test_split(x, y, test_size = testRatio)
X_Train, X_Validation, Y_Train, Y_Validation = train_test_split(X_Train, Y_Train, test_size = valRatio)

X_Train = np.reshape(X_Train.values, (X_Train.shape[0], reshapeVal, reshapeVal))
X_Test = np.reshape(X_Test.values, (X_Test.shape[0], reshapeVal, reshapeVal))
X_Validation = np.reshape(X_Validation.values, (X_Validation.shape[0], reshapeVal, reshapeVal))


print("Train Data Shape: ", X_Train.shape)
print("Test Data Shape: ", X_Test.shape)
print("Validation Data shape: ", X_Validation.shape)

We are splitting the data into Train, Test & Validation sets to get more accurate predictions and reshaping the raw data into the image by consuming the 784 data columns to 28×28 pixel images.

Since we are talking about characters, we had to come up with a process of identifying The following snippet will plot the character equivalent number into a matplotlib chart & showcase the overall distribution trend after splitting.

Y_Train_Num = np.int0(y)
count = np.zeros(numOfClasses, dtype='int')
for i in Y_Train_Num:
    count[i] +=1

alphabets = []
for i in word_dict.values():
    alphabets.append(i)

fig, ax = plt.subplots(1,1, figsize=(7,7))
ax.barh(alphabets, count)

plt.xlabel("Number of elements ")
plt.ylabel("Alphabets")
plt.grid()
plt.show(block=False)
plt.pause(sleepTime)
plt.close()

Note that we have tweaked the plt.show property with (block=False). This property will enable us to continue execution without human interventions after the initial pause.

# Model reshaping the training & test dataset
X_Train = X_Train.reshape(X_Train.shape[0],X_Train.shape[1],X_Train.shape[2],1)
print("Shape of Train Data: ", X_Train.shape)

X_Test = X_Test.reshape(X_Test.shape[0], X_Test.shape[1], X_Test.shape[2],1)
print("Shape of Test Data: ", X_Test.shape)

X_Validation = X_Validation.reshape(X_Validation.shape[0], X_Validation.shape[1], X_Validation.shape[2],1)
print("Shape of Validation data: ", X_Validation.shape)

# Converting the labels to categorical values
Y_Train_Catg = to_categorical(Y_Train, num_classes = numOfClasses, dtype='int')
print("Shape of Train Labels: ", Y_Train_Catg.shape)

Y_Test_Catg = to_categorical(Y_Test, num_classes = numOfClasses, dtype='int')
print("Shape of Test Labels: ", Y_Test_Catg.shape)

Y_Validation_Catg = to_categorical(Y_Validation, num_classes = numOfClasses, dtype='int')
print("Shape of validation labels: ", Y_Validation_Catg.shape)

In the above diagram, the application did reshape all three categories of data before calling the primary CNN function.

model = Sequential()

model.add(Conv2D(filters=filterVal1, kernel_size=kernelSize, activation=activationType, input_shape=(28,28,1)))
model.add(MaxPool2D(pool_size=poolSize, strides=stridesVal))

model.add(Conv2D(filters=filterVal2, kernel_size=kernelSize, activation=activationType, padding = paddingVal1))
model.add(MaxPool2D(pool_size=poolSize, strides=stridesVal))

model.add(Conv2D(filters=filterVal3, kernel_size=kernelSize, activation=activationType, padding = paddingVal2))
model.add(MaxPool2D(pool_size=poolSize, strides=stridesVal))

model.add(Flatten())

model.add(Dense(DenkseVal2,activation = activationType))
model.add(Dense(DenkseVal3,activation = activationType))

model.add(Dense(DenkseVal1,activation = activationType2))

model.compile(optimizer = Adam(learning_rate=learningRateVal), loss='categorical_crossentropy', metrics=['accuracy'])
reduce_lr = ReduceLROnPlateau(monitor=monitorVal, factor=factorVal, patience=patienceVal1, min_lr=minLrVal)
early_stop = EarlyStopping(monitor=monitorVal, min_delta=minDeltaVal, patience=patienceVal2, verbose=verboseFlag, mode=modeInd)


fittedModel = model.fit(X_Train, Y_Train_Catg, epochs=epochsVal, callbacks=[reduce_lr, early_stop],  validation_data = (X_Validation,Y_Validation_Catg))

return (model, fittedModel)

In the above snippet, the convolution layers are followed by maxpool layers, which reduce the number of features extracted. The output of the maxpool layers and convolution layers are flattened into a vector of a single dimension and supplied as an input to the Dense layer—the CNN model prepared for training the model using the training dataset.

We have used optimization parameters like Adam, RMSProp & the application we trained for eight epochs for better accuracy & predictions.

# Displaying the accuracies & losses for train & validation set
print("Validation Accuracy :", history.history['val_accuracy'])
print("Training Accuracy :", history.history['accuracy'])
print("Validation Loss :", history.history['val_loss'])
print("Training Loss :", history.history['loss'])

# Displaying the Loss Graph
plt.figure(1)
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.legend(['training','validation'])
plt.title('Loss')
plt.xlabel('epoch')
plt.show(block=False)
plt.pause(sleepTime1)
plt.close()

# Dsiplaying the Accuracy Graph
plt.figure(2)
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.legend(['training','validation'])
plt.title('Accuracy')
plt.xlabel('epoch')
plt.show(block=False)
plt.pause(sleepTime1)
plt.close()

Also, we have captured the validation Accuracy & Loss & plot them into two separate graphs for better understanding.

try:
    score = model.evaluate(X_Test, Y_Test_Catg, verbose=0)
    print('Test Score = ', score[0])
    print('Test Accuracy = ', score[1])
except Exception as e:
    x = str(e)
    print('Error: ', x)

Also, the application is trying to get the accuracy of the model that we trained & validated with the training & validation data. This time we have used test data to predict the confidence score.

# Displaying some of the test images & their predicted labels
fig, ax = plt.subplots(3,3, figsize=(8,9))
axes = ax.flatten()

for i in range(9):
    axes[i].imshow(np.reshape(X_Test[i], reshapeVal1), cmap="Greys")
    pred = word_dict[np.argmax(Y_Test_Catg[i])]
    print('Prediction: ', pred)
    axes[i].set_title("Test Prediction: " + pred)
    axes[i].grid()
plt.show(block=False)
plt.pause(sleepTime1)
plt.close()

Finally, the application testing with some random test data & tried to plot the output & prediction assessment.

Testing with Random Test Data
fileName = Curr_Path + sep + 'Model' + sep + 'model_trained_' + str(epochsVal) + '.p'
print('Model Name: ', str(fileName))

pickle_out = open(fileName, 'wb')
pickle.dump(model, pickle_out)
pickle_out.close()

As a part of the last step, the application will generate the models using a pickle package & save them under a specific location, which the reader application will use.

3. trainingVisualDataRead.py (Main application that will invoke the training class to predict alphabet through WebCam using Convolutional Neural Network (CNN).)


###############################################
#### Written By: SATYAKI DE ####
#### Written On: 17-Jan-2022 ####
#### Modified On 17-Jan-2022 ####
#### ####
#### Objective: This is the main calling ####
#### python script that will invoke the ####
#### clsAlhpabetReading class to initiate ####
#### teach & perfect the model to read ####
#### visual alphabets using Convolutional ####
#### Neural Network (CNN). ####
###############################################
# We keep the setup code in a different class as shown below.
import clsAlphabetReading as ar
from clsConfig import clsConfig as cf
import datetime
import logging
###############################################
### Global Section ###
###############################################
# Instantiating all the three classes
x1 = ar.clsAlphabetReading()
###############################################
### End of Global Section ###
###############################################
def main():
try:
# Other useful variables
debugInd = 'Y'
var = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
var1 = datetime.datetime.now()
print('Start Time: ', str(var))
# End of useful variables
# Initiating Log Class
general_log_path = str(cf.conf['LOG_PATH'])
# Enabling Logging Info
logging.basicConfig(filename=general_log_path + 'restoreVideo.log', level=logging.INFO)
print('Started Transformation!')
# Execute all the pass
r1 = x1.trainModel(debugInd, var)
if (r1 == 0):
print('Successfully Visual Alphabet Training Completed!')
else:
print('Failed to complete the Visual Alphabet Training!')
var2 = datetime.datetime.now()
c = var2 var1
minutes = c.total_seconds() / 60
print('Total difference in minutes: ', str(minutes))
print('End Time: ', str(var1))
except Exception as e:
x = str(e)
print('Error: ', x)
if __name__ == "__main__":
main()

And the core snippet from the above script is –

x1 = ar.clsAlphabetReading()

Instantiate the main class.

r1 = x1.trainModel(debugInd, var)

The python application will invoke the class & capture the returned value inside the r1 variable.

4. readingVisualData.py (Reading the model to predict Alphabet using WebCAM.)


###############################################
#### Written By: SATYAKI DE ####
#### Written On: 18-Jan-2022 ####
#### Modified On 18-Jan-2022 ####
#### ####
#### Objective: This python script will ####
#### scan the live video feed from the ####
#### web-cam & predict the alphabet that ####
#### read it. ####
###############################################
# We keep the setup code in a different class as shown below.
from clsConfig import clsConfig as cf
import datetime
import logging
import cv2
import pickle
import numpy as np
###############################################
### Global Section ###
###############################################
sep = str(cf.conf['SEP'])
Curr_Path = str(cf.conf['INIT_PATH'])
fileName = str(cf.conf['FILE_NAME'])
epochsVal = int(cf.conf['epochsVal'])
numOfClasses = int(cf.conf['numOfClasses'])
word_dict = cf.conf['word_dict']
width = int(cf.conf['width'])
height = int(cf.conf['height'])
imgSize = cf.conf['imgSize']
threshold = float(cf.conf['threshold'])
imgDimension = cf.conf['imgDimension']
imgSmallDim = cf.conf['imgSmallDim']
imgMidDim = cf.conf['imgMidDim']
reshapeParam1 = int(cf.conf['reshapeParam1'])
reshapeParam2 = int(cf.conf['reshapeParam2'])
colorFeed = cf.conf['colorFeed']
colorPredict = cf.conf['colorPredict']
###############################################
### End of Global Section ###
###############################################
def main():
try:
# Other useful variables
debugInd = 'Y'
var = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
var1 = datetime.datetime.now()
print('Start Time: ', str(var))
# End of useful variables
# Initiating Log Class
general_log_path = str(cf.conf['LOG_PATH'])
# Enabling Logging Info
logging.basicConfig(filename=general_log_path + 'restoreVideo.log', level=logging.INFO)
print('Started Live Streaming!')
cap = cv2.VideoCapture(0)
cap.set(3, width)
cap.set(4, height)
fileName = Curr_Path + sep + 'Model' + sep + 'model_trained_' + str(epochsVal) + '.p'
print('Model Name: ', str(fileName))
pickle_in = open(fileName, 'rb')
model = pickle.load(pickle_in)
while True:
status, img = cap.read()
if status == False:
break
img_copy = img.copy()
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = cv2.resize(img, imgDimension)
img_copy = cv2.GaussianBlur(img_copy, imgSmallDim, 0)
img_gray = cv2.cvtColor(img_copy, cv2.COLOR_BGR2GRAY)
bin, img_thresh = cv2.threshold(img_gray, 100, 255, cv2.THRESH_BINARY_INV)
img_final = cv2.resize(img_thresh, imgMidDim)
img_final = np.reshape(img_final, (reshapeParam1,reshapeParam2,reshapeParam2,reshapeParam1))
img_pred = word_dict[np.argmax(model.predict(img_final))]
# Extracting Probability Values
Predict_X = model.predict(img_final)
probVal = round(np.amax(Predict_X) * 100)
cv2.putText(img, "Live Feed : (" + str(probVal) + "%) ", (20,25), cv2.FONT_HERSHEY_TRIPLEX, 0.7, color = colorFeed)
cv2.putText(img, "Prediction: " + img_pred, (20,410), cv2.FONT_HERSHEY_DUPLEX, 1.3, color = colorPredict)
cv2.imshow("Original Image", img)
if cv2.waitKey(1) & 0xFF == ord('q'):
r1=0
break
if (r1 == 0):
print('Successfully Alphabets predicted!')
else:
print('Failed to predict alphabet!')
var2 = datetime.datetime.now()
c = var2 var1
minutes = c.total_seconds() / 60
print('Total Run Time in minutes: ', str(minutes))
print('End Time: ', str(var1))
except Exception as e:
x = str(e)
print('Error: ', x)
if __name__ == "__main__":
main()

And the key snippet from the above code is –

cap = cv2.VideoCapture(0)
cap.set(3, width)
cap.set(4, height)

The application is reading the live video data from WebCAM. Also, set out the height & width for the video output.

fileName = Curr_Path + sep + 'Model' + sep + 'model_trained_' + str(epochsVal) + '.p'
print('Model Name: ', str(fileName))

pickle_in = open(fileName, 'rb')
model = pickle.load(pickle_in)

The application reads the model output generated as part of the previous script using the pickle package.

while True:
    status, img = cap.read()

    if status == False:
        break

The application will read the WebCAM & it exits if there is an end of video transmission or some kind of corrupt video frame.

img_copy = img.copy()

img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = cv2.resize(img, imgDimension)

img_copy = cv2.GaussianBlur(img_copy, imgSmallDim, 0)
img_gray = cv2.cvtColor(img_copy, cv2.COLOR_BGR2GRAY)
bin, img_thresh = cv2.threshold(img_gray, 100, 255, cv2.THRESH_BINARY_INV)

img_final = cv2.resize(img_thresh, imgMidDim)
img_final = np.reshape(img_final, (reshapeParam1,reshapeParam2,reshapeParam2,reshapeParam1))


img_pred = word_dict[np.argmax(model.predict(img_final))]

We have initially cloned the original video frame & then it converted from BGR2GRAYSCALE while applying the threshold on it doe better prediction outcomes. Then the image has resized & reshaped for model input. Finally, the np.argmax function extracted the class index with the highest predicted probability. Furthermore, it is translated using the word_dict dictionary to an Alphabet & displayed on top of the Live View.

# Extracting Probability Values
Predict_X = model.predict(img_final)
probVal = round(np.amax(Predict_X) * 100)

Also, derive the confidence score of that probability & display that on top of the Live View.

if cv2.waitKey(1) & 0xFF == ord('q'):
    r1=0
    break

The above code will let the developer exit from this application by pressing the “Esc” or “q”-key from the keyboard & the program will terminate.


So, we’ve done it.

You will get the complete codebase in the following Github link.

I’ll bring some more exciting topic in the coming days from the Python verse. Please share & subscribe my post & let me know your feedback.

Till then, Happy Avenging! 😀

Note: All the data & scenario posted here are representational data & scenarios & available over the internet & for educational purpose only. Some of the images (except my photo) that we’ve used are available over the net. We don’t claim the ownership of these images. There is an always room for improvement & especially the prediction quality of Alphabet.