Building an Azure Function using Python (Crossover between Reality Stone & Time Stone in Python Verse)

Hi Guys!

Today, we’ll be discussing a preview features from Microsoft Azure. Building an Azure function using Python on it’s Linux/Ubuntu VM. Since this is a preview feature, we cannot implement this to production till now. However, my example definitely has more detailed steps & complete code guide compared to whatever available over the internet.

In this post, I will take one of my old posts & enhance it as per this post. Hence, I’ll post those modified scripts. However, I won’t discuss the logic in details as most of these scripts have cosmetic changes to cater to this requirement.

In this post, we’ll only show Ubuntu run & there won’t be Windows or MAC comparison.

Initial Environment Preparation:

  1. Set-up new virtual machine on Azure.
  2. Set-up Azure function environments on that server.

Set-up new virtual machine on Azure:

I’m not going into the details of how to create Ubuntu VM on Microsoft Azure. You can refer the steps in more information here.

After successful creation, the VM will look like this –

Azure VM - Ubuntu

Detailed information you can get after clicking this hyperlink over the name of the VM.

Azure-VM Basic Details

You have to open port 7071 for application testing from the local using postman.

You can get it from the network option under VM as follows –

Network-Configuration

Make sure that you are restricting these ports to specific network & not open to ALL traffic.

So, your VM is ready now.

To update Azure CLI, you need to use the following commands –

sudo apt-get update && sudo apt-get install –only-upgrade -y azure-cli

Set-up Azure function environments on that server:

To set-up the environment, you don’t have to go for Python installation as by default Ubuntu in Microsoft Azure comes up with desired Python version, i.e., Python3.6. However, to run the python application, you need to install the following app –

  1. Microsoft SDK. You will get the details from this link.
  2. Installing node-js. You will get the details from this link.
  3. You need to install a docker. However, as per Microsoft official version, this is not required. But, you can create a Docker container to distribute the python function in Azure application. I would say you can install this just in case if you want to continue with this approach. You will get the details over here. If you want to know details about the Docker. And, how you want to integrate python application. You can refer to this link.
  4. Your desired python packages. In this case, we’ll be modifying this post – “Encryption/Decryption, JSON, API, Flask Framework in Python (Crossover between Reality Stone & Time Stone in Python Verse).” We’ll be modifying a couple of lines only to cater to this functionality & deploying the same as an Azure function.
  5. Creating an Azure function template on Ubuntu. The essential detail you’ll get it from here. However, over there, it was not shown in detailed steps of python packages & how you can add all the dependencies to publish it in details. It was an excellent post to start-up your knowledge.

Let’s see these components status & very brief details –

Microsoft SDK:

To check the dot net version. You need to type the following commands in Ubuntu –

dotnet –info

And, the output will look like this –

DotNet-Version

Node-Js:

Following is the way to verify your node-js version & details –

node -v

npm -v

And, the output looks like this –

Node-Js

Docker:

Following is the way to test your docker version –

docker -v

And, the output will look like this –

Docker-Version

Python Packages:

Following are the python packages that we need to run & publish that in Azure cloud as an Azure function –

pip freeze | grep -v “pkg-resources” > requirements.txt

And, the output is –

Requirements

You must be wondered that why have I used this grep commands here. I’ve witnessed that on many occassion in Microsoft Azure’s Linux VM it produces one broken package called resource=0.0.0, which will terminate the deployment process. Hence, this is very crucial to eliminate those broken packages.

Now, we’re ready for our python scripts. But, before that, let’s see the directory structure over here –

Win_Vs_Ubuntu-Cloud

Creating an Azure Function Template on Ubuntu: 

Before we post our python scripts, we’ll create these following components, which is essential for our Python-based Azure function –

  • Creating a group:

              Creating a group either through Azure CLI or using a docker, you can proceed. The commands for Azure CLI is as follows –

az group create –name “rndWestUSGrp” –location westus

It is advisable to use double quotes for parameters value. Otherwise, you might land-up getting the following error – “Error: “resourceGroupName” should satisfy the constraint – “Pattern”: /^[-w._]+$/“.

I’m sure. You don’t want to face that again. And, here is the output –

CreateDeploymentGroup

Note that, here I haven’t used the double-quotes. But, to avoid any unforeseen issues – you should use double-quotes. You can refer the docker command from the above link, which I’ve shared earlier.

Now, you need to create one storage account where the metadata information of your function will be stored. You will create that as follows –

az storage account create –name cryptpy2019 –location westus –resource-group rndWestUSGrp –sku Standard_LRS

And, the output will look like this –

AccountCreate_1

Great. Now, we’ll create a virtual environment for Python3.6.

python3.6 -m venv .env
source .env/bin/activate

Python-VM

Now, we’ll create a local function project.

func init encPro

And, the output you will get is as follows –

Local-Function

Inside this directory, you’ll see the following files –

Local-Function-Details

You need to edit the host.json with these default lines –

{
 “version”: “2.0”,
 “extensionBundle”: {
                                       “id”: “Microsoft.Azure.Functions.ExtensionBundle”,
                                       “version”: “[1.*, 2.0.0)”
                                     }
}

And, the final content of these two files (excluding the requirements.txt) will look like this –

Configuration

Finally, we’ll create the template function by this following command –

func new

This will follow with steps finish it. You need to choose Python as your programing language. You need to choose an HTTP trigger template. Once you created that successfully, you’ll see the following files –

func_New

Note that, our initial function name is -> getVal.

By default, Azure will generate some default code inside the __init__.py. The details of those two files can be found here.

Since we’re ready with our environment setup. We can now discuss our Python scripts –

1. clsConfigServer.py (This script contains all the parameters of the server.)

###########################################
#### Written By: SATYAKI DE        ########
#### Written On: 10-Feb-2019       ########
####                               ########
#### Objective: Parameter File     ########
###########################################

import os
import platform as pl

# Checking with O/S system
os_det = pl.system()

class clsConfigServer(object):
    Curr_Path = os.path.dirname(os.path.realpath(__file__))

    if os_det == "Windows":
        config = {
            'FILE': 'acct_addr_20180112.csv',
            'SRC_FILE_PATH': Curr_Path + '\\' + 'src_file\\',
            'PROFILE_FILE_PATH': Curr_Path + '\\' + 'profile\\',
            'HOST_IP_ADDR': '0.0.0.0',
            'DEF_SALT': 'iooquzKtqLwUwXG3rModqj_fIl409vemWg9PekcKh2o=',
            'ACCT_NBR_SALT': 'iooquzKtqLwUwXG3rModqj_fIlpp1vemWg9PekcKh2o=',
            'NAME_SALT': 'iooquzKtqLwUwXG3rModqj_fIlpp1026Wg9PekcKh2o=',
            'PHONE_SALT': 'iooquzKtqLwUwXG3rMM0F5_fIlpp1026Wg9PekcKh2o=',
            'EMAIL_SALT': 'iooquzKtqLwU0653rMM0F5_fIlpp1026Wg9PekcKh2o='
        }
    else:
        config = {
            'FILE': 'acct_addr_20180112.csv',
            'SRC_FILE_PATH': Curr_Path + '/' + 'src_file/',
            'PROFILE_FILE_PATH': Curr_Path + '/' + 'profile/',
            'HOST_IP_ADDR': '0.0.0.0',
            'DEF_SALT': 'iooquzKtqLwUwXG3rModqj_fIl409vemWg9PekcKh2o=',
            'ACCT_NBR_SALT': 'iooquzKtqLwUwXG3rModqj_fIlpp1vemWg9PekcKh2o=',
            'NAME_SALT': 'iooquzKtqLwUwXG3rModqj_fIlpp1026Wg9PekcKh2o=',
            'PHONE_SALT': 'iooquzKtqLwUwXG3rMM0F5_fIlpp1026Wg9PekcKh2o=',
            'EMAIL_SALT': 'iooquzKtqLwU0653rMM0F5_fIlpp1026Wg9PekcKh2o='
        }

2. clsEnDec.py (This script is a lighter version of encryption & decryption of our previously discussed scenario. Hence, we won’t discuss in details. You can refer my earlier post to understand the logic of this script.)

###########################################
#### Written By: SATYAKI DE        ########
#### Written On: 25-Jan-2019       ########
#### Package Cryptography needs to ########
#### install in order to run this  ########
#### script.                       ########
####                               ########
#### Objective: This script will   ########
#### encrypt/decrypt based on the  ########
#### hidden supplied salt value.   ########
###########################################

from cryptography.fernet import Fernet
import logging

from getVal.clsConfigServer import clsConfigServer as csf

class clsEnDec(object):

    def __init__(self):
        # Calculating Key
        self.token = str(csf.config['DEF_SALT'])

    def encrypt_str(self, data, token):
        try:
            # Capturing the Salt Information
            t1 = self.token
            t2 = token

            if t2 == '':
                salt = t1
            else:
                salt = t2

            logging.info("Encrypting the value!")

            # Checking Individual Types inside the Dataframe
            cipher = Fernet(salt)
            encr_val = str(cipher.encrypt(bytes(data,'utf8'))).replace("b'","").replace("'","")

            strV1 = "Encrypted value:: " + str(encr_val)
            logging.info(strV1)

            return encr_val

        except Exception as e:
            x = str(e)
            print(x)
            encr_val = ''

            return encr_val

    def decrypt_str(self, data, token):
        try:
            # Capturing the Salt Information
            t1 = self.token
            t2 = token

            if t2 == '':
                salt = t1
            else:
                salt = t2

            logging.info("Decrypting the value!")

            # Checking Individual Types inside the Dataframe
            cipher = Fernet(salt)
            decr_val = str(cipher.decrypt(bytes(data,'utf8'))).replace("b'","").replace("'","")

            strV2 = "Decrypted value:: " + str(decr_val)
            logging.info(strV2)

            return decr_val

        except Exception as e:
            x = str(e)
            print(x)
            decr_val = ''

            return decr_val

3. clsFlask.py (This is the main server script that will the encrypt/decrypt class from our previous scenario. This script will capture the requested JSON from the client, who posted from the clients like another python script or third-party tools like Postman.)

###########################################
#### Written By: SATYAKI DE            ####
#### Written On: 25-Jan-2019           ####
#### Package Flask package needs to    ####
#### install in order to run this      ####
#### script.                           ####
####                                   ####
#### Objective: This script will       ####
#### encrypt/decrypt based on the      ####
#### supplied salt value. Also,        ####
#### this will capture the individual  ####
#### element & stored them into JSON   ####
#### variables using flask framework.  ####
###########################################

from getVal.clsConfigServer import clsConfigServer as csf
from getVal.clsEnDec import clsEnDecAuth

getVal = clsEnDec()

import logging

class clsFlask(object):
    def __init__(self):
        self.xtoken = str(csf.config['DEF_SALT'])

    def getEncryptProcess(self, dGroup, input_data, dTemplate):
        try:
            # It is sending default salt value
            xtoken = self.xtoken

            # Capturing the individual element
            dGroup = dGroup
            input_data = input_data
            dTemplate = dTemplate

            # This will check the mandatory json elements
            if ((dGroup != '') & (dTemplate != '')):

                # Based on the Group & Element it will fetch the salt
                # Based on the specific salt it will encrypt the data
                if ((dGroup == 'GrDet') & (dTemplate == 'subGrAcct_Nbr')):
                    xtoken = str(csf.config['ACCT_NBR_SALT'])

                    strV1 = "xtoken: " + str(xtoken)
                    logging.info(strV1)
                    strV2 = "Flask Input Data: " + str(input_data)
                    logging.info(strV2)

                    #x = cen.clsEnDecAuth()
                    ret_val = getVal.encrypt_str(input_data, xtoken)
                elif ((dGroup == 'GrDet') & (dTemplate == 'subGrName')):
                    xtoken = str(csf.config['NAME_SALT'])

                    strV1 = "xtoken: " + str(xtoken)
                    logging.info(strV1)
                    strV2 = "Flask Input Data: " + str(input_data)
                    logging.info(strV2)

                    #x = cen.clsEnDecAuth()
                    ret_val = getVal.encrypt_str(input_data, xtoken)
                elif ((dGroup == 'GrDet') & (dTemplate == 'subGrPhone')):
                    xtoken = str(csf.config['PHONE_SALT'])

                    strV1 = "xtoken: " + str(xtoken)
                    logging.info(strV1)
                    strV2 = "Flask Input Data: " + str(input_data)
                    logging.info(strV2)

                    #x = cen.clsEnDecAuth()
                    ret_val = getVal.encrypt_str(input_data, xtoken)
                elif ((dGroup == 'GrDet') & (dTemplate == 'subGrEmail')):
                    xtoken = str(csf.config['EMAIL_SALT'])

                    strV1 = "xtoken: " + str(xtoken)
                    logging.info(strV1)
                    strV2 = "Flask Input Data: " + str(input_data)
                    logging.info(strV2)

                    #x = cen.clsEnDecAuth()
                    ret_val = getVal.encrypt_str(input_data, xtoken)
                else:
                    ret_val = ''
            else:
                ret_val = ''

            # Return value
            return ret_val

        except Exception as e:
            ret_val = ''
            # Return the valid json Error Response
            return ret_val

    def getDecryptProcess(self, dGroup, input_data, dTemplate):
        try:
            xtoken = self.xtoken

            # Capturing the individual element
            dGroup = dGroup
            input_data = input_data
            dTemplate = dTemplate

            # This will check the mandatory json elements
            if ((dGroup != '') & (dTemplate != '')):

                # Based on the Group & Element it will fetch the salt
                # Based on the specific salt it will decrypt the data
                if ((dGroup == 'GrDet') & (dTemplate == 'subGrAcct_Nbr')):
                    xtoken = str(csf.config['ACCT_NBR_SALT'])

                    strV1 = "xtoken: " + str(xtoken)
                    logging.info(strV1)
                    strV2 = "Flask Input Data: " + str(input_data)
                    logging.info(strV2)

                    #x = cen.clsEnDecAuth()
                    ret_val = getVal.decrypt_str(input_data, xtoken)
                elif ((dGroup == 'GrDet') & (dTemplate == 'subGrName')):
                    xtoken = str(csf.config['NAME_SALT'])

                    strV1 = "xtoken: " + str(xtoken)
                    logging.info(strV1)
                    strV2 = "Flask Input Data: " + str(input_data)
                    logging.info(strV2)

                    #x = cen.clsEnDecAuth()
                    ret_val = getVal.decrypt_str(input_data, xtoken)
                elif ((dGroup == 'GrDet') & (dTemplate == 'subGrPhone')):
                    xtoken = str(csf.config['PHONE_SALT'])

                    strV1 = "xtoken: " + str(xtoken)
                    logging.info(strV1)
                    strV2 = "Flask Input Data: " + str(input_data)
                    logging.info(strV2)

                    #x = cen.clsEnDecAuth()
                    ret_val = getVal.decrypt_str(input_data, xtoken)
                elif ((dGroup == 'GrDet') & (dTemplate == 'subGrEmail')):
                    xtoken = str(csf.config['EMAIL_SALT'])

                    strV1 = "xtoken: " + str(xtoken)
                    logging.info(strV1)
                    strV2 = "Flask Input Data: " + str(input_data)
                    logging.info(strV2)

                    #x = cen.clsEnDecAuth()
                    ret_val = getVal.decrypt_str(input_data, xtoken)
                else:
                    ret_val = ''
            else:
                ret_val = ''

            # Return value
            return ret_val

        except Exception as e:
            ret_val = ''
            # Return the valid Error Response
            return ret_val

4. __init__.py (This autogenerated script contains the primary calling methods of encryption & decryption based on the element header & values after enhanced as per the functionality.)

###########################################
#### Written By: SATYAKI DE            ####
#### Written On: 08-Jun-2019           ####
#### Package Flask package needs to    ####
#### install in order to run this      ####
#### script.                           ####
####                                   ####
#### Objective: Main Calling scripts.  ####
#### This is an autogenrate scripts.   ####
#### However, to meet the functionality####
#### we've enhanced as per our logic.  ####
###########################################
__all__ = ['clsFlask']

import logging
import azure.functions as func
import json

from getVal.clsFlask import clsFlask

getVal = clsFlask()

def main(req: func.HttpRequest) -> func.HttpResponse:
    logging.info('Python Encryption function processed a request.')

    str_val = 'Input Payload:: ' + str(req.get_json())
    str_1 = str(req.get_json())

    logging.info(str_val)

    ret_val = {}
    DataIn = ''
    dGroup = ''
    dTemplate = ''
    flg = ''

    if (str_1 != ''):
        try:
            req_body = req.get_json()
            dGroup = req_body.get('dataGroup')

            try:
                DataIn = req_body.get('data')
                strV15 = 'If Part:: ' + str(DataIn)

                logging.info(strV15)

                if ((DataIn == '') | (DataIn == None)):
                    raise ValueError

                flg = 'Y'
            except ValueError:
                DataIn = req_body.get('edata')
                strV15 = 'Else Part:: ' + str(DataIn)
                logging.info(strV15)
                flg = 'N'
            except:
                DataIn = req_body.get('edata')
                strV15 = 'Else Part:: ' + str(DataIn)
                logging.info(strV15)
                flg = 'N'

            dTemplate = req_body.get('dataTemplate')

        except ValueError:
            pass

    strV5 = "Encrypt Decrypt Flag:: " + flg
    logging.info(strV5)

    if (flg == 'Y'):

        if ((DataIn != '') & ((dGroup != '') & (dTemplate != ''))):

            logging.info("Encryption Started!")
            ret_val = getVal.getEncryptProcess(dGroup, DataIn, dTemplate)
            strVal2 = 'Return Payload:: ' + str(ret_val)
            logging.info(strVal2)

            xval = json.dumps(ret_val)

            return func.HttpResponse(xval)
        else:
            return func.HttpResponse(
                 "Please pass a data in the request body",
                 status_code=400
            )
    else:

        if ((DataIn != '') & ((dGroup != '') & (dTemplate != ''))):

            logging.info("Decryption Started!")
            ret_val2 = getVal.getDecryptProcess(dGroup, DataIn, dTemplate)
            strVal3 = 'Return Payload:: ' + str(ret_val)
            logging.info(strVal3)

            xval1 = json.dumps(ret_val2)

            return func.HttpResponse(xval1)
        else:
            return func.HttpResponse(
                "Please pass a data in the request body",
                status_code=400
            )

In this script, based on the value of an flg variable, we’re calling our encryption or decryption methods. And, the value of the flg variable is set based on the following logic –

try:
    DataIn = req_body.get('data')
    strV15 = 'If Part:: ' + str(DataIn)

    logging.info(strV15)

    if ((DataIn == '') | (DataIn == None)):
        raise ValueError

    flg = 'Y'
except ValueError:
    DataIn = req_body.get('edata')
    strV15 = 'Else Part:: ' + str(DataIn)
    logging.info(strV15)
    flg = 'N'
except:
    DataIn = req_body.get('edata')
    strV15 = 'Else Part:: ' + str(DataIn)
    logging.info(strV15)
    flg = 'N'

So, if the application gets the “data” element then – it will consider the data needs to be encrypted; otherwise, it will go for decryption. And, based on that – it is setting the value.

Now, we’re ready to locally run our application –

func host start

And, the output will look like this –

StartingAzureFunction-Python
StartingAzureFunction-Python 2

Let’s test it from postman –

Encrypt:

Postman-Encrypt

Decrypt:

Postman-Decrypt

Great. Now, we’re ready to publish this application to Azure cloud.

As in our earlier steps, we’ve already built our storage account for the metadata. Please scroll to top to view that again. Now, using that information, we’ll make the function app with a more meaningful name –

az functionapp create –resource-group rndWestUSGrp –os-type Linux \
–consumption-plan-location westus –runtime python \
–name getEncryptDecrypt –storage-account cryptpy2019

CreatingFunctionPython

Let’s publish the function –

sudo func azure functionapp publish “getEncryptDecrypt” –build-native-deps

On many occassion, without the use of “–build-native-deps” might leads to failure. Hence, I’ve added that to avoid such scenarios.

Publishing-Function

Now, we need to test our first published complex Azure function with Python through postman –

Encrypt:

PubishedFuncPostmanEncrypt

Decrypt:

PubishedFuncPostmanDecrypt

Wonderful! So, it is working.

You can see the function under the Azure portal –

Deployed-Function

Let’s see some other important features of this function –

Monitor: You can monitor two ways. One is by clicking the monitor options you will get the individual requests level details & also get to see the log information over here –

Function-Monitor-Details-1

Clicking Application Insights will give you another level of detailed logs, which can be very useful for debugging. We’ll touch this at the end of this post with a very brief discussion.

Function-Monitor-Details-3.JPG

As you can see, clicking individual lines will show the details further.

Let’s quickly check the application insights –

Application-Insights-1

Application Insights will give you a SQL like an interface where you can get the log details of all your requests.

Application-Insights-2

You can expand the individual details for further information.

Application-Insights-3

You can change the parameter name & other details & click the run button to get all the log details for your debugging purpose.

So, finally, we’ve achieved our goal. This is relatively long posts. But, I’m sure this will help you to create your first python-based function on the Azure platform.

Hope, you will like this approach. Let me know your comment on the same.

I’ll bring some more exciting topic in the coming days from the Python verse.

Till then, Happy Avenging! 😀

Note: All the data posted here are representational data & available over the internet.

Improvement of Pandas data processing performance using Multi-threading with the Queue (Another crossover of Space Stone, Reality Stone & Power Stone)

Today, we’ll discuss how to improve your panda’s data processing power using Multi-threading. Note that, we are not going to use any third party python package. Also, we’ll be using a couple of python scripts, which we’ve already discussed in our previous posts. Hence, this time, I won’t post them here.

Please refer the following scripts –

a. callClient.py
b. callRunServer.py
c. clsConfigServer.py
d. clsEnDec.py
e. clsFlask.py
f. clsL.py
g. clsParam.py
h. clsSerial.py
i. clsWeb.py

Please find the above scripts described here with details.

So, today, we’ll be looking into how the multi-threading really helps the application to gain some performance over others.

Let’s go through our existing old sample files –

Sample Data

And, we’ve four columns that are applicable for encryption. This file contains 10K records. That means the application will make 40K calls to the server for a different kind of encryption for each column.

Now, if you are going with the serial approach, which I’ve already discussed here, will take significant time for data processing. However, if we could club a few rows as one block & in this way we can create multiple blocks out of our data csv like this –

Data_Blocks

As you can see that blocks are marked with a different color. So, now if you send each block of data in parallel & send the data for encryption. Ideally, you will be able to process data much faster than the usual serial process. And, this what we would be looking for with the help of python’s multi-threading & queue. Without the queue, this program won’t be possible as the queue maintains the data & process integrity.

One more thing we would like to explain here. Whenever this application is sending the block of data. It will be posting that packed into a (key, value) dictionary randomly. Key will be the thread name. The reason, we’re not expecting data after process might arrive in some random order wrapped with the dictionary as well. Once the application received all the dictionary with dataframe with encrypted/decrypted data, the data will be rearranged based on the key & then joined back with the rest of the data.

Let’s see one sample way of sending & receiving random thread –

Data Packing

The left-hand side, the application is splitting the recordset into small chunks of a group. Once, those group created, using python multi-threading the application is now pushing them into the queue for the producer to produce the encrypted/decrypted value. Similar way, after processing the application will push the final product into the queue for consuming the final output.

This is the pictorial representation of dictionary ordering based on the key-value & then the application will extract the entire data to form the target csv file.

Final_Data_Sort

Let’s explore the script –

1. clsParallel.py (This script will consume the split csv files & send the data blocks in the form of the dictionary using multi-threading to the API for encryption in parallel. Hence, the name comes into the picture.)

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
import pandas as p
import clsWeb as cw
import datetime
from clsParam import clsParam as cf
import threading
from queue import Queue
import gc
import signal
import time
import os

# Declaring Global Variable
q = Queue()
m = Queue()
tLock = threading.Lock()
threads = []

fin_dict = {}
fin_dict_1 = {}
stopping = threading.Event()

# Disbling Warnings
def warn(*args, **kwargs):
    pass
import warnings
warnings.warn = warn

class clsParallel(object):
    def __init__(self):
        self.path = cf.config['PATH']
        self.EncryptMode = str(cf.config['ENCRYPT_MODE'])
        self.DecryptMode = str(cf.config['DECRYPT_MODE'])
        self.num_worker_threads = int(cf.config['NUM_OF_THREAD'])
        

    # Lookup Methods for Encryption
    def encrypt_acctNbr(self, row):
        # Declaring Local Variable
        en_AcctNbr = ''
        json_source_str = ''

        # Capturing essential values
        EncryptMode = self.EncryptMode
        lkp_acctNbr = row['Acct_Nbr']
        str_acct_nbr = str(lkp_acctNbr)
        fil_acct_nbr = str_acct_nbr.strip()

        # Forming JSON String for this field
        json_source_str = '{"dataGroup":"GrDet","data":"' + fil_acct_nbr + '","dataTemplate":"subGrAcct_Nbr"}'

        # Identifying Length of the field
        len_acct_nbr = len(fil_acct_nbr)

        # This will trigger the service if it has valid data
        if len_acct_nbr > 0:
            x = cw.clsWeb(json_source_str)
            en_AcctNbr = x.getResponse(EncryptMode)
        else:
            en_AcctNbr = ''

        return en_AcctNbr

    def encrypt_Name(self, row):
        # Declaring Local Variable
        en_AcctName = ''

        # Capturing essential values
        EncryptMode = self.EncryptMode
        lkp_acctName = row['Name']
        str_acct_name = str(lkp_acctName)
        fil_acct_name = str_acct_name.strip()

        # Forming JSON String for this field
        json_source_str = '{"dataGroup":"GrDet","data":"' + fil_acct_name + '","dataTemplate":"subGrName"}'

        # Identifying Length of the field
        len_acct_nbr = len(fil_acct_name)

        # This will trigger the service if it has valid data
        if len_acct_nbr > 0:
            x = cw.clsWeb(json_source_str)
            en_AcctName = x.getResponse(EncryptMode)
        else:
            en_AcctName = ''

        return en_AcctName

    def encrypt_Phone(self, row):
        # Declaring Local Variable
        en_Phone = ''

        # Capturing essential values
        EncryptMode = self.EncryptMode
        lkp_phone = row['Phone']
        str_phone = str(lkp_phone)
        fil_phone = str_phone.strip()

        # Forming JSON String for this field
        json_source_str = '{"dataGroup":"GrDet","data":"' + fil_phone + '","dataTemplate":"subGrPhone"}'

        # Identifying Length of the field
        len_acct_nbr = len(fil_phone)

        # This will trigger the service if it has valid data
        if len_acct_nbr > 0:
            x = cw.clsWeb(json_source_str)
            en_Phone = x.getResponse(EncryptMode)
        else:
            en_Phone = ''

        return en_Phone

    def encrypt_Email(self, row):
        # Declaring Local Variable
        en_Email = ''

        # Capturing essential values
        EncryptMode = self.EncryptMode
        lkp_email = row['Email']
        str_email = str(lkp_email)
        fil_email = str_email.strip()

        # Forming JSON String for this field
        json_source_str = '{"dataGroup":"GrDet","data":"' + fil_email + '","dataTemplate":"subGrEmail"}'

        # Identifying Length of the field
        len_acct_nbr = len(fil_email)

        # This will trigger the service if it has valid data
        if len_acct_nbr > 0:
            x = cw.clsWeb(json_source_str)
            en_Email = x.getResponse(EncryptMode)
        else:
            en_Email = ''

        return en_Email

    # Lookup Methods for Decryption
    def decrypt_acctNbr(self, row):
        # Declaring Local Variable
        de_AcctNbr = ''
        json_source_str = ''

        # Capturing essential values
        EncryptMode = self.DecryptMode
        lkp_acctNbr = row['Acct_Nbr']
        str_acct_nbr = str(lkp_acctNbr)
        fil_acct_nbr = str_acct_nbr.strip()

        # Forming JSON String for this field
        json_source_str = '{"dataGroup":"GrDet","data":"' + fil_acct_nbr + '","dataTemplate":"subGrAcct_Nbr"}'

        # Identifying Length of the field
        len_acct_nbr = len(fil_acct_nbr)

        # This will trigger the service if it has valid data
        if len_acct_nbr > 0:
            x = cw.clsWeb(json_source_str)
            de_AcctNbr = x.getResponse(EncryptMode)
        else:
            de_AcctNbr = ''

        return de_AcctNbr

    def decrypt_Name(self, row):
        # Declaring Local Variable
        de_AcctName = ''

        # Capturing essential values
        EncryptMode = self.DecryptMode
        lkp_acctName = row['Name']
        str_acct_name = str(lkp_acctName)
        fil_acct_name = str_acct_name.strip()

        # Forming JSON String for this field
        json_source_str = '{"dataGroup":"GrDet","data":"' + fil_acct_name + '","dataTemplate":"subGrName"}'

        # Identifying Length of the field
        len_acct_nbr = len(fil_acct_name)

        # This will trigger the service if it has valid data
        if len_acct_nbr > 0:
            x = cw.clsWeb(json_source_str)
            de_AcctName = x.getResponse(EncryptMode)
        else:
            de_AcctName = ''

        return de_AcctName

    def decrypt_Phone(self, row):
        # Declaring Local Variable
        de_Phone = ''

        # Capturing essential values
        EncryptMode = self.DecryptMode
        lkp_phone = row['Phone']
        str_phone = str(lkp_phone)
        fil_phone = str_phone.strip()

        # Forming JSON String for this field
        json_source_str = '{"dataGroup":"GrDet","data":"' + fil_phone + '","dataTemplate":"subGrPhone"}'

        # Identifying Length of the field
        len_acct_nbr = len(fil_phone)

        # This will trigger the service if it has valid data
        if len_acct_nbr > 0:
            x = cw.clsWeb(json_source_str)
            de_Phone = x.getResponse(EncryptMode)
        else:
            de_Phone = ''

        return de_Phone

    def decrypt_Email(self, row):
        # Declaring Local Variable
        de_Email = ''

        # Capturing essential values
        EncryptMode = self.DecryptMode
        lkp_email = row['Email']
        str_email = str(lkp_email)
        fil_email = str_email.strip()

        # Forming JSON String for this field
        json_source_str = '{"dataGroup":"GrDet","data":"' + fil_email + '","dataTemplate":"subGrEmail"}'

        # Identifying Length of the field
        len_acct_nbr = len(fil_email)

        # This will trigger the service if it has valid data
        if len_acct_nbr > 0:
            x = cw.clsWeb(json_source_str)
            de_Email = x.getResponse(EncryptMode)
        else:
            de_Email = ''

        return de_Email

    def getEncrypt(self, df_dict):
        try:
            df_input = p.DataFrame()
            df_fin = p.DataFrame()

            # Assigning Target File Basic Name
            for k, v in df_dict.items():
                Thread_Name = k
                df_input = v

            # Checking total count of rows
            count_row = int(df_input.shape[0])
            # print('Part number of records to process:: ', count_row)

            if count_row > 0:

                # Deriving rows
                df_input['Encrypt_Acct_Nbr'] = df_input.apply(lambda row: self.encrypt_acctNbr(row), axis=1)
                df_input['Encrypt_Name'] = df_input.apply(lambda row: self.encrypt_Name(row), axis=1)
                df_input['Encrypt_Phone'] = df_input.apply(lambda row: self.encrypt_Phone(row), axis=1)
                df_input['Encrypt_Email'] = df_input.apply(lambda row: self.encrypt_Email(row), axis=1)

                # Dropping original columns
                df_input.drop(['Acct_Nbr', 'Name', 'Phone', 'Email'], axis=1, inplace=True)

                # Renaming new columns with the old column names
                df_input.rename(columns={'Encrypt_Acct_Nbr':'Acct_Nbr'}, inplace=True)
                df_input.rename(columns={'Encrypt_Name': 'Name'}, inplace=True)
                df_input.rename(columns={'Encrypt_Phone': 'Phone'}, inplace=True)
                df_input.rename(columns={'Encrypt_Email': 'Email'}, inplace=True)

                # New Column List Orders
                column_order = ['Acct_Nbr', 'Name', 'Acct_Addr_1', 'Acct_Addr_2', 'Phone', 'Email', 'Serial_No']
                df_fin = df_input.reindex(column_order, axis=1)

                fin_dict[Thread_Name] = df_fin

            return 0
        except Exception as e:
            df_error = p.DataFrame({'Acct_Nbr':str(e), 'Name':'', 'Acct_Addr_1':'', 'Acct_Addr_2':'', 'Phone':'', 'Email':'', 'Serial_No':''})
            fin_dict[Thread_Name] = df_error

            return 1

    def getEncryptWQ(self):
        item_dict = {}
        item = ''

        while True:
            try:
                #item_dict = q.get()
                item_dict = q.get_nowait()

                for k, v in item_dict.items():
                    # Assigning Target File Basic Name
                    item = str(k)

                if ((item == 'TEND') | (item == '')):
                    break

                if ((item != 'TEND') | (item != '')):
                    self.getEncrypt(item_dict)

                q.task_done()
            except Exception:
                break

    def getEncryptParallel(self, df_payload):
        start_pos = 0
        end_pos = 0
        l_dict = {}
        c_dict = {}
        min_val_list = {}
        cnt = 0
        num_worker_threads = self.num_worker_threads
        split_df = p.DataFrame()
        df_ret = p.DataFrame()

        # Assigning Target File Basic Name
        df_input = df_payload

        # Checking total count of rows
        count_row = df_input.shape[0]
        print('Total number of records to process:: ', count_row)

        interval = int(count_row / num_worker_threads) + 1
        actual_worker_task = int(count_row / interval) + 1

        for i in range(actual_worker_task):
            t = threading.Thread(target=self.getEncryptWQ)
            t.start()
            threads.append(t)
            name = str(t.getName())

            if ((start_pos + interval) < count_row):
                end_pos = start_pos + interval
            else:
                end_pos = start_pos + (count_row - start_pos)

            split_df = df_input.iloc[start_pos:end_pos]
            l_dict[name] = split_df

            if ((start_pos > count_row) | (start_pos == count_row)):
                break
            else:
                start_pos = start_pos + interval

            q.put(l_dict)
            cnt += 1

        # block until all tasks are done
        q.join()

        # stop workers
        for i in range(actual_worker_task):
            c_dict['TEND'] = p.DataFrame()
            q.put(c_dict)

        for t in threads:
            t.join()

        for k, v in fin_dict.items():
            min_val_list[int(k.replace('Thread-',''))] = v

        min_val = min(min_val_list, key=int)

        for k, v in sorted(fin_dict.items(), key=lambda k:int(k[0].replace('Thread-',''))):
            if int(k.replace('Thread-','')) == min_val:
                df_ret = fin_dict[k]
            else:
                d_frames = [df_ret, fin_dict[k]]
                df_ret = p.concat(d_frames)

        # Releasing Memory
        del[[split_df]]
        gc.collect()

        return df_ret

    def getDecrypt(self, df_encrypted_dict):
        try:
            df_input = p.DataFrame()
            df_fin = p.DataFrame()

            # Assigning Target File Basic Name
            for k, v in df_encrypted_dict.items():
                Thread_Name = k
                df_input = v

            # Checking total count of rows
            count_row = int(df_input.shape[0])

            if count_row > 0:

                # Deriving rows
                df_input['Decrypt_Acct_Nbr'] = df_input.apply(lambda row: self.decrypt_acctNbr(row), axis=1)
                df_input['Decrypt_Name'] = df_input.apply(lambda row: self.decrypt_Name(row), axis=1)
                df_input['Decrypt_Phone'] = df_input.apply(lambda row: self.decrypt_Phone(row), axis=1)
                df_input['Decrypt_Email'] = df_input.apply(lambda row: self.decrypt_Email(row), axis=1)

                # Dropping original columns
                df_input.drop(['Acct_Nbr', 'Name', 'Phone', 'Email'], axis=1, inplace=True)

                # Renaming new columns with the old column names
                df_input.rename(columns={'Decrypt_Acct_Nbr':'Acct_Nbr'}, inplace=True)
                df_input.rename(columns={'Decrypt_Name': 'Name'}, inplace=True)
                df_input.rename(columns={'Decrypt_Phone': 'Phone'}, inplace=True)
                df_input.rename(columns={'Decrypt_Email': 'Email'}, inplace=True)

                # New Column List Orders
                column_order = ['Acct_Nbr', 'Name', 'Acct_Addr_1', 'Acct_Addr_2', 'Phone', 'Email']
                df_fin = df_input.reindex(column_order, axis=1)

                fin_dict_1[Thread_Name] = df_fin

            return 0

        except Exception as e:
            df_error = p.DataFrame({'Acct_Nbr': str(e), 'Name': '', 'Acct_Addr_1': '', 'Acct_Addr_2': '', 'Phone': '', 'Email': ''})
            fin_dict_1[Thread_Name] = df_error

            return 1

    def getDecryptWQ(self):
        item_dict = {}
        item = ''

        while True:
            try:
                #item_dict = q.get()
                item_dict = m.get_nowait()

                for k, v in item_dict.items():
                    # Assigning Target File Basic Name
                    item = str(k)

                if ((item == 'TEND') | (item == '')):
                    return True
                    #break

                if ((item != 'TEND') | (item != '')):
                    self.getDecrypt(item_dict)

                m.task_done()
            except Exception:
                break


    def getDecryptParallel(self, df_payload):
        start_pos = 0
        end_pos = 0
        l_dict_1 = {}
        c_dict_1 = {}
        cnt = 0
        num_worker_threads = self.num_worker_threads
        split_df = p.DataFrame()
        df_ret_1 = p.DataFrame()

        min_val_list = {}

        # Assigning Target File Basic Name
        df_input_1 = df_payload

        # Checking total count of rows
        count_row = df_input_1.shape[0]
        print('Total number of records to process:: ', count_row)

        interval = int(count_row / num_worker_threads) + 1
        actual_worker_task = int(count_row / interval) + 1

        for i in range(actual_worker_task):
            t_1 = threading.Thread(target=self.getDecryptWQ)
            t_1.start()
            threads.append(t_1)
            name = str(t_1.getName())

            if ((start_pos + interval) < count_row):
                end_pos = start_pos + interval
            else:
                end_pos = start_pos + (count_row - start_pos)

            split_df = df_input_1.iloc[start_pos:end_pos]
            l_dict_1[name] = split_df

            if ((start_pos > count_row) | (start_pos == count_row)):
                break
            else:
                start_pos = start_pos + interval

            m.put(l_dict_1)
            cnt += 1

        # block until all tasks are done
        m.join()

        # stop workers
        for i in range(actual_worker_task):
            c_dict_1['TEND'] = p.DataFrame()
            m.put(c_dict_1)

        for t_1 in threads:
            t_1.join()

        for k, v in fin_dict_1.items():
            min_val_list[int(k.replace('Thread-',''))] = v

        min_val = min(min_val_list, key=int)

        for k, v in sorted(fin_dict_1.items(), key=lambda k:int(k[0].replace('Thread-',''))):
            if int(k.replace('Thread-','')) == min_val:
                df_ret_1 = fin_dict_1[k]
            else:
                d_frames = [df_ret_1, fin_dict_1[k]]
                df_ret_1 = p.concat(d_frames)

        # Releasing Memory
        del[[split_df]]
        gc.collect()

        return df_ret_1

Let’s explain the key snippet from the code. For your information, we’re not going to describe all the encryption methods such as –

# Encryption Method
encrypt_acctNbr

encrypt_Name
encrypt_Phone
encrypt_Email

# Decryption Method
decrypt_acctNbr
decrypt_Name
decrypt_Phone
decrypt_Email

As we’ve already described the logic of these methods in our previous post.

# Checking total count of rows
count_row = df_input.shape[0]
print('Total number of records to process:: ', count_row)

interval = int(count_row / num_worker_threads) + 1
actual_worker_task = int(count_row / interval) + 1

Fetching the total number of rows from the dataframe. Based on the row count, the application will derive the actual number of threads that will be used for parallelism.

for i in range(actual_worker_task):
    t = threading.Thread(target=self.getEncryptWQ)
    t.start()
    threads.append(t)
    name = str(t.getName())

    if ((start_pos + interval) < count_row):
        end_pos = start_pos + interval
    else:
        end_pos = start_pos + (count_row - start_pos)

    split_df = df_input.iloc[start_pos:end_pos]
    l_dict[name] = split_df

    if ((start_pos > count_row) | (start_pos == count_row)):
        break
    else:
        start_pos = start_pos + interval

    q.put(l_dict)
    cnt += 1

Here, the application is splitting the data into multiple groups of smaller data packs & then combining them into (key, value) dictionary & finally placed them into the individual queue.

# block until all tasks are done
q.join()

This will join the queue process. This will ensure that queues are free after consuming the data.

# stop workers
for i in range(actual_worker_task):
    c_dict['TEND'] = p.DataFrame()
    q.put(c_dict)

for t in threads:
    t.join()

The above lines are essential. As this will help the process to identify that no more data are left to send at the queue. And, the main thread will wait until all the threads are done.

for k, v in fin_dict.items():
    min_val_list[int(k.replace('Thread-',''))] = v

min_val = min(min_val_list, key=int)

Once, all the jobs are done. The application will find the minimum thread value & based on that we can sequence all the data chunks as explained in our previous image & finally clubbed them together to form the complete csv.

for k, v in sorted(fin_dict.items(), key=lambda k:int(k[0].replace('Thread-',''))):
    if int(k.replace('Thread-','')) == min_val:
        df_ret = fin_dict[k]
    else:
        d_frames = [df_ret, fin_dict[k]]
        df_ret = p.concat(d_frames)

As already explained, using the starting point of our data dictionary element, the application is clubbing the data back to the main csv.

Next method, which we’ll be explaining is –

getEncryptWQ

Please find the key lines –

while True:
    try:
        #item_dict = q.get()
        item_dict = q.get_nowait()

        for k, v in item_dict.items():
            # Assigning Target File Basic Name
            item = str(k)

        if ((item == 'TEND') | (item == '')):
            break

        if ((item != 'TEND') | (item != '')):
            self.getEncrypt(item_dict)

        q.task_done()
    except Exception:
        break

This method will consume the data & processing it for encryption or decryption. This will continue to do the work until or unless it receives the key value as TEND or the queue is empty.

Let’s compare the statistics between Windows & MAC.

Let’s see the file structure first –

Windows (16 GB – Core 2) Vs Mac (10 GB – Core 2):

Win_Vs_MAC

Windows (16 GB – Core 2):

Performance_Stats_Windows

Mac (10 GB – Core 2):

Performance_Stats_MAC

Find the complete directory from both the machine.
Windows (16 GB – Core 2):

Win_Files

Mac (10 GB – Core 2):

MAC_Files

Here is the final output –

Sample_OUTPut

So, we’ve achieved our target goal.

Let me know – how do you like this post. Please share your suggestion & comments.

I’ll be back with another installment from the Python verse.

Till then – Happy Avenging!

Pandas with Encryption/Decryption along with the JSON – (Client API Access) along with Data Queue (A crossover between Space stone, Reality Stone & Power Stone)

Today, we’ll be discussing a new cross-over between API, JSON, Encryption along with data distribution through Queue.

The primary objective here is to distribute one csv file through API service & access our previously deployed Encryption/Decryption methods by accessing the parallel call through Queue. In this case, our primary objective is to allow asynchronous calls to Queue for data distributions & at this point we’re not really looking for performance improvement. Instead, our goal to achieve the target.

My upcoming posts will discuss the improvement of performance using Parallel calls.

Let’s discuss it now.

Please find the structure of our Windows & MAC directory are as follows –

Win_Vs_MAC

We’re not going to discuss any scripts, which we’ve already discussed in my previous posts. Please refer the relevant earlier posts from my blogs.

1. clsL.py (This script will create the split csv files or final merge file after the corresponding process. However, this can be used as usual verbose debug logging as well. Hence, the name comes into the picture.)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
###########################################
#### Written By: SATYAKI DE        ########
#### Written On: 25-Jan-2019       ########
####                               ########
#### Objective: Log File           ########
###########################################
import pandas as p
import platform as pl
from clsParam import clsParam as cf

class clsL(object):
    def __init__(self):
        self.path = cf.config['PATH']

    def logr(self, Filename, Ind, df, subdir=None):
        try:
            x = p.DataFrame()
            x = df
            sd = subdir

            os_det = pl.system()

            if sd == None:
                if os_det == "Windows":
                    fullFileName = self.path + '\\' + Filename
                else:
                    fullFileName = self.path + '/' + Filename
            else:
                if os_det == "Windows":
                    fullFileName = self.path + '\\' + sd + "\\" + Filename
                else:
                    fullFileName = self.path + '/' + sd + "/" + Filename

            if Ind == 'Y':
                x.to_csv(fullFileName, index=False)

            return 0

        except Exception as e:
            y = str(e)
            print(y)
            return 3

2. callRunServer.py (This script will create an instance of a server. Once, it is running – it will emulate the Server API functionalities. Hence, the name comes into the picture.)

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
############################################
#### Written By: SATYAKI DE             ####
#### Written On: 10-Feb-2019            ####
#### Package Flask package needs to     ####
#### install in order to run this       ####
#### script.                            ####
####                                    ####
#### Objective: This script will        ####
#### initiate the encrypt/decrypt class ####
#### based on client supplied data.     ####
#### Also, this will create an instance ####
#### of the server & create an endpoint ####
#### or API using flask framework.      ####
############################################

from flask import Flask
from flask import jsonify
from flask import request
from flask import abort
from clsConfigServer import clsConfigServer as csf
import clsFlask as clf

app = Flask(__name__)

@app.route('/process/getEncrypt', methods=['POST'])
def getEncrypt():
    try:
        # If the server application doesn't have
        # valid json, it will throw 400 error
        if not request.get_json:
            abort(400)

        # Capturing the individual element
        content = request.get_json()

        dGroup = content['dataGroup']
        input_data = content['data']
        dTemplate = content['dataTemplate']

        # For debug purpose only
        print("-" * 157)
        print("Group: ", dGroup)
        print("Data: ", input_data)
        print("Template: ", dTemplate)
        print("-" * 157)

        ret_val = ''

        if ((dGroup != '') & (dTemplate != '')):
            y = clf.clsFlask()
            ret_val = y.getEncryptProcess(dGroup, input_data, dTemplate)
        else:
            abort(500)

        return jsonify({'status': 'success', 'encrypt_val': ret_val})
    except Exception as e:
        x = str(e)
        return jsonify({'status': 'error', 'detail': x})


@app.route('/process/getDecrypt', methods=['POST'])
def getDecrypt():
    try:
        # If the server application doesn't have
        # valid json, it will throw 400 error
        if not request.get_json:
            abort(400)

        # Capturing the individual element
        content = request.get_json()

        dGroup = content['dataGroup']
        input_data = content['data']
        dTemplate = content['dataTemplate']

        # For debug purpose only
        print("-" * 157)
        print("Group: ", dGroup)
        print("Data: ", input_data)
        print("Template: ", dTemplate)
        print("-" * 157)

        ret_val = ''

        if ((dGroup != '') & (dTemplate != '')):
            y = clf.clsFlask()
            ret_val = y.getDecryptProcess(dGroup, input_data, dTemplate)
        else:
            abort(500)

        return jsonify({'status': 'success', 'decrypt_val': ret_val})
    except Exception as e:
        x = str(e)
        return jsonify({'status': 'error', 'detail': x})


def main():
    try:
        print('Starting Encrypt/Decrypt Application!')

        # Calling Server Start-Up Script
        app.run(debug=True, host=str(csf.config['HOST_IP_ADDR']))
        ret_val = 0

        if ret_val == 0:
            print("Finished Returning Message!")
        else:
            raise IOError
    except Exception as e:
        print("Server Failed To Start!")

if __name__ == '__main__':
    main()

 

3. clsFlask.py (This script is part of the server process, which will categorize the encryption logic based on different groups. Hence, the name comes into the picture.)

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
###########################################
#### Written By: SATYAKI DE            ####
#### Written On: 25-Jan-2019           ####
#### Package Flask package needs to    ####
#### install in order to run this      ####
#### script.                           ####
####                                   ####
#### Objective: This script will       ####
#### encrypt/decrypt based on the      ####
#### supplied salt value. Also,        ####
#### this will capture the individual  ####
#### element & stored them into JSON   ####
#### variables using flask framework.  ####
###########################################

from clsConfigServer import clsConfigServer as csf
import clsEnDecAuth as cen

class clsFlask(object):
    def __init__(self):
        self.xtoken = str(csf.config['DEF_SALT'])

    def getEncryptProcess(self, dGroup, input_data, dTemplate):
        try:
            # It is sending default salt value
            xtoken = self.xtoken

            # Capturing the individual element
            dGroup = dGroup
            input_data = input_data
            dTemplate = dTemplate

            # This will check the mandatory json elements
            if ((dGroup != '') & (dTemplate != '')):

                # Based on the Group & Element it will fetch the salt
                # Based on the specific salt it will encrypt the data
                if ((dGroup == 'GrDet') & (dTemplate == 'subGrAcct_Nbr')):
                    xtoken = str(csf.config['ACCT_NBR_SALT'])
                    print("xtoken: ", xtoken)
                    print("Flask Input Data: ", input_data)
                    x = cen.clsEnDec(xtoken)
                    ret_val = x.encrypt_str(input_data)
                elif ((dGroup == 'GrDet') & (dTemplate == 'subGrName')):
                    xtoken = str(csf.config['NAME_SALT'])
                    print("xtoken: ", xtoken)
                    print("Flask Input Data: ", input_data)
                    x = cen.clsEnDec(xtoken)
                    ret_val = x.encrypt_str(input_data)
                elif ((dGroup == 'GrDet') & (dTemplate == 'subGrPhone')):
                    xtoken = str(csf.config['PHONE_SALT'])
                    print("xtoken: ", xtoken)
                    print("Flask Input Data: ", input_data)
                    x = cen.clsEnDec(xtoken)
                    ret_val = x.encrypt_str(input_data)
                elif ((dGroup == 'GrDet') & (dTemplate == 'subGrEmail')):
                    xtoken = str(csf.config['EMAIL_SALT'])
                    print("xtoken: ", xtoken)
                    print("Flask Input Data: ", input_data)
                    x = cen.clsEnDec(xtoken)
                    ret_val = x.encrypt_str(input_data)
                else:
                    ret_val = ''
            else:
                ret_val = ''

            # Return value
            return ret_val

        except Exception as e:
            ret_val = ''
            # Return the valid json Error Response
            return ret_val

    def getDecryptProcess(self, dGroup, input_data, dTemplate):
        try:
            xtoken = self.xtoken

            # Capturing the individual element
            dGroup = dGroup
            input_data = input_data
            dTemplate = dTemplate

            # This will check the mandatory json elements
            if ((dGroup != '') & (dTemplate != '')):

                # Based on the Group & Element it will fetch the salt
                # Based on the specific salt it will decrypt the data
                if ((dGroup == 'GrDet') & (dTemplate == 'subGrAcct_Nbr')):
                    xtoken = str(csf.config['ACCT_NBR_SALT'])
                    print("xtoken: ", xtoken)
                    print("Flask Input Data: ", input_data)
                    x = cen.clsEnDec(xtoken)
                    ret_val = x.decrypt_str(input_data)
                elif ((dGroup == 'GrDet') & (dTemplate == 'subGrName')):
                    xtoken = str(csf.config['NAME_SALT'])
                    print("xtoken: ", xtoken)
                    print("Flask Input Data: ", input_data)
                    x = cen.clsEnDec(xtoken)
                    ret_val = x.decrypt_str(input_data)
                elif ((dGroup == 'GrDet') & (dTemplate == 'subGrPhone')):
                    xtoken = str(csf.config['PHONE_SALT'])
                    print("xtoken: ", xtoken)
                    print("Flask Input Data: ", input_data)
                    x = cen.clsEnDec(xtoken)
                    ret_val = x.decrypt_str(input_data)
                elif ((dGroup == 'GrDet') & (dTemplate == 'subGrEmail')):
                    xtoken = str(csf.config['EMAIL_SALT'])
                    print("xtoken: ", xtoken)
                    print("Flask Input Data: ", input_data)
                    x = cen.clsEnDec(xtoken)
                    ret_val = x.decrypt_str(input_data)
                else:
                    ret_val = ''
            else:
                ret_val = ''

            # Return value
            return ret_val

        except Exception as e:
            ret_val = ''
            # Return the valid Error Response
            return ret_val

 

4. clsEnDec.py (This script will convert the string to encryption or decryption from its previous states based on the supplied group. Hence, the name comes into the picture.)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
###########################################
#### Written By: SATYAKI DE        ########
#### Written On: 25-Jan-2019       ########
#### Package Cryptography needs to ########
#### install in order to run this  ########
#### script.                       ########
####                               ########
#### Objective: This script will   ########
#### encrypt/decrypt based on the  ########
#### hidden supplied salt value.   ########
###########################################

from cryptography.fernet import Fernet

class clsEnDec(object):

    def __init__(self, token):
        # Calculating Key
        self.token = token

    def encrypt_str(self, data):
        try:
            # Capturing the Salt Information
            salt = self.token

            # Checking Individual Types inside the Dataframe
            cipher = Fernet(salt)
            encr_val = str(cipher.encrypt(bytes(data,'utf8'))).replace("b'","").replace("'","")

            return encr_val

        except Exception as e:
            x = str(e)
            print(x)
            encr_val = ''

            return encr_val

    def decrypt_str(self, data):
        try:
            # Capturing the Salt Information
            salt = self.token

            # Checking Individual Types inside the Dataframe
            cipher = Fernet(salt)
            decr_val = str(cipher.decrypt(bytes(data,'utf8'))).replace("b'","").replace("'","")

            return decr_val

        except Exception as e:
            x = str(e)
            print(x)
            decr_val = ''

            return decr_val

 

5. clsConfigServer.py (This script contains all the main parameter details of your emulated API server. Hence, the name comes into the picture.)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
###########################################
#### Written By: SATYAKI DE        ########
#### Written On: 10-Feb-2019       ########
####                               ########
#### Objective: Parameter File     ########
###########################################

import os
import platform as pl

# Checking with O/S system
os_det = pl.system()

class clsConfigServer(object):
    Curr_Path = os.path.dirname(os.path.realpath(__file__))

    if os_det == "Windows":
        config = {
            'FILE': 'acct_addr_20180112.csv',
            'SRC_FILE_PATH': Curr_Path + '\\' + 'src_file\\',
            'PROFILE_FILE_PATH': Curr_Path + '\\' + 'profile\\',
            'HOST_IP_ADDR': '0.0.0.0',
            'DEF_SALT': 'iooquzKtqLwUwXG3rModqj_fIl409vemWg9PekcKh2o=',
            'ACCT_NBR_SALT': 'iooquzKtqLwUwXG3rModqj_fIlpp1vemWg9PekcKh2o=',
            'NAME_SALT': 'iooquzKtqLwUwXG3rModqj_fIlpp1026Wg9PekcKh2o=',
            'PHONE_SALT': 'iooquzKtqLwUwXG3rMM0F5_fIlpp1026Wg9PekcKh2o=',
            'EMAIL_SALT': 'iooquzKtqLwU0653rMM0F5_fIlpp1026Wg9PekcKh2o='
        }
    else:
        config = {
            'FILE': 'acct_addr_20180112.csv',
            'SRC_FILE_PATH': Curr_Path + '/' + 'src_file/',
            'PROFILE_FILE_PATH': Curr_Path + '/' + 'profile/',
            'HOST_IP_ADDR': '0.0.0.0',
            'DEF_SALT': 'iooquzKtqLwUwXG3rModqj_fIl409vemWg9PekcKh2o=',
            'ACCT_NBR_SALT': 'iooquzKtqLwUwXG3rModqj_fIlpp1vemWg9PekcKh2o=',
            'NAME_SALT': 'iooquzKtqLwUwXG3rModqj_fIlpp1026Wg9PekcKh2o=',
            'PHONE_SALT': 'iooquzKtqLwUwXG3rMM0F5_fIlpp1026Wg9PekcKh2o=',
            'EMAIL_SALT': 'iooquzKtqLwU0653rMM0F5_fIlpp1026Wg9PekcKh2o='
        }

 

6. clsWeb.py (This script will receive the input Pandas dataframe & then convert it to JSON & then send it back to our Flask API Server for encryption/decryption. Hence, the name comes into the picture.)

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
############################################
#### Written By: SATYAKI DE             ####
#### Written On: 09-Mar-2019            ####
#### Package Flask package needs to     ####
#### install in order to run this       ####
#### script.                            ####
####                                    ####
#### Objective: This script will        ####
#### initiate API based JSON requests   ####
#### at the server & receive the        ####
#### response from it & transform it    ####
#### back to the data-frame.            ####
############################################

import json
import requests
import datetime
import time
import ssl
import os
from clsParam import clsParam as cf

class clsWeb(object):
    def __init__(self, payload):
        self.payload = payload
        self.path = str(cf.config['PATH'])
        self.max_retries = int(cf.config['MAX_RETRY'])
        self.encrypt_ulr = str(cf.config['ENCRYPT_URL'])
        self.decrypt_ulr = str(cf.config['DECRYPT_URL'])

    def getResponse(self, mode):

        # Assigning Logging Info
        max_retries = self.max_retries
        encrypt_ulr = self.encrypt_ulr
        decrypt_ulr = self.decrypt_ulr
        En_Dec_Mode = mode

        try:

            # Bypassing SSL Authentication
            try:
                _create_unverified_https_context = ssl._create_unverified_context
            except AttributeError:
                # Legacy python that doesn't verify HTTPS certificates by default
                pass
            else:
                # Handle target environment that doesn't support HTTPS verification
                ssl._create_default_https_context = _create_unverified_https_context

            # Providing the url
            if En_Dec_Mode == 'En':
                url = encrypt_ulr
            else:
                url = decrypt_ulr

            print("URL::", url)

            # Capturing the payload
            data = self.payload

            # Converting String to Json
            # json_data = json.loads(data)
            json_data = json.loads(data)

            print("JSON:::::::", str(json_data))

            headers = {"Content-type": "application/json"}
            param = headers

            var1 = datetime.datetime.now().strftime("%H:%M:%S")
            print('Json Fetch Start Time:', var1)

            retries = 1
            success = False

            while not success:
                # Getting response from web service
                # response = requests.post(url, params=param, json=data, auth=(login, password), verify=False)
                response = requests.post(url, params=param, json=json_data, verify=False)
                print("Complete Return Code:: ", str(response.status_code))
                print("Return Code Initial::", str(response.status_code)[:1])

                if str(response.status_code)[:1] == '2':
                    # response = s.post(url, params=param, json=json_data, verify=False)
                    success = True
                else:
                    wait = retries * 2
                    print("Retry fails! Waiting " + str(wait) + " seconds and retrying.")
                    time.sleep(wait)
                    retries += 1
                    # print('Return Service::')

                # Checking Maximum Retries
                if retries == max_retries:
                    success = True
                    raise ValueError

                print("JSON RESPONSE:::", response.text)

                var2 = datetime.datetime.now().strftime("%H:%M:%S")
                print('Json Fetch End Time:', var2)

                # Capturing the response json from Web Service
                response_json = response.text
                load_val = json.loads(response_json)

                # Based on the mode application will send the return value
                if En_Dec_Mode == 'En':
                    encrypt_ele = str(load_val['encrypt_val'])
                    return_ele = encrypt_ele
                else:
                    decrypt_ele = str(load_val['decrypt_val'])
                    return_ele = decrypt_ele

            return return_ele

        except ValueError as v:
            raise ValueError

        except Exception as e:
            x = str(e)
            print(x)

            return 'Error'

Let’s discuss the key lines –

try:
    _create_unverified_https_context = ssl._create_unverified_context
except AttributeError:
    # Legacy python that doesn't verify HTTPS certificates by default
    pass
else:
    # Handle target environment that doesn't support HTTPS verification
    ssl._create_default_https_context = _create_unverified_https_context

If you are running in a secure environment. Sometimes, your proxy or firewall blocks you from accessing the API server – if they are using different networks. Hence, we need to bypass that. However, it is advisable not to use this in Prod environment for obvious reasons.

# Capturing the payload
data = self.payload

# Converting String to Json
json_data = json.loads(data)

This snippet will convert your data frame into a JSON object.

response = requests.post(url, params=param, json=json_data, verify=False)
print("Complete Return Code:: ", str(response.status_code))
print("Return Code Initial::", str(response.status_code)[:1])

if str(response.status_code)[:1] == '2':
    # response = s.post(url, params=param, json=json_data, verify=False)
    success = True
else:
    wait = retries * 2
    print("Retry fails! Waiting " + str(wait) + " seconds and retrying.")
    time.sleep(wait)
    retries += 1
    # print('Return Service::')

# Checking Maximum Retries
if retries == max_retries:
    success = True
    raise ValueError

In the first 3 lines, the application is building a JSON response, which will be sent to the API Server. And, it will capture the response from the server.

Next 8 lines will check the status code. And, based on the status code, it will continue or retry the requests in case if there is any failure or lousy response from the server.

Last 3 lines say if the application crosses the maximum allowable error limit, it will terminate the process by raising it as an error.

# Capturing the response json from Web Service
response_json = response.text
load_val = json.loads(response_json)

Once, it receives the valid response, the application will convert it back to the dataframe & send it to the calling methods.

7. clsParam.py (This script contains the fundamental parameter values to run your client application. Hence, the name comes into the picture.)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
###########################################
#### Written By: SATYAKI DE        ########
#### Written On: 20-Jan-2019       ########
###########################################

import os

class clsParam(object):

    config = {
        'MAX_RETRY' : 5,
        'ENCRYPT_MODE' : 'En',
        'DECRYPT_MODE': 'De',
        'PATH' : os.path.dirname(os.path.realpath(__file__)),
        'SRC_DIR' : os.path.dirname(os.path.realpath(__file__)) + '/' + 'src_files/',
        'FIN_DIR': os.path.dirname(os.path.realpath(__file__)) + '/' + 'finished/',
        'ENCRYPT_URL': "http://192.168.0.13:5000/process/getEncrypt",
        'DECRYPT_URL': "http://192.168.0.13:5000/process/getDecrypt",
        'NUM_OF_THREAD': 20
    }

 

8. clsSerial.py (This script will show the usual or serial way to convert your data into encryption & then to decrypts & store the result into two separate csv files. Hence, the name comes into the picture.)

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
############################################
#### Written By: SATYAKI DE             ####
#### Written On: 10-Feb-2019            ####
#### Package Flask package needs to     ####
#### install in order to run this       ####
#### script.                            ####
####                                    ####
#### Objective: This script will        ####
#### initiate the encrypt/decrypt class ####
#### based on client supplied data      ####
#### using serial mode operation.       ####
############################################

import pandas as p
import clsWeb as cw
import datetime
from clsParam import clsParam as cf

# Disbling Warnings
def warn(*args, **kwargs):
    pass
import warnings
warnings.warn = warn

class clsSerial(object):
    def __init__(self):
        self.path = cf.config['PATH']
        self.EncryptMode = str(cf.config['ENCRYPT_MODE'])
        self.DecryptMode = str(cf.config['DECRYPT_MODE'])

    # Lookup Methods for Encryption
    def encrypt_acctNbr(self, row):
        # Declaring Local Variable
        en_AcctNbr = ''
        json_source_str = ''

        # Capturing essential values
        EncryptMode = self.EncryptMode
        lkp_acctNbr = row['Acct_Nbr']
        str_acct_nbr = str(lkp_acctNbr)
        fil_acct_nbr = str_acct_nbr.strip()

        # Forming JSON String for this field
        json_source_str = '{"dataGroup":"GrDet","data":"' + fil_acct_nbr + '","dataTemplate":"subGrAcct_Nbr"}'

        # Identifying Length of the field
        len_acct_nbr = len(fil_acct_nbr)

        # This will trigger the service if it has valid data
        if len_acct_nbr > 0:
            x = cw.clsWeb(json_source_str)
            en_AcctNbr = x.getResponse(EncryptMode)
        else:
            en_AcctNbr = ''

        fil_acct_nbr = ''
        fil_acct_nbr = ''

        return en_AcctNbr

    def encrypt_Name(self, row):
        # Declaring Local Variable
        en_AcctName = ''

        # Capturing essential values
        EncryptMode = self.EncryptMode
        lkp_acctName = row['Name']
        str_acct_name = str(lkp_acctName)
        fil_acct_name = str_acct_name.strip()

        # Forming JSON String for this field
        json_source_str = '{"dataGroup":"GrDet","data":"' + fil_acct_name + '","dataTemplate":"subGrName"}'

        # Identifying Length of the field
        len_acct_nbr = len(fil_acct_name)

        # This will trigger the service if it has valid data
        if len_acct_nbr > 0:
            x = cw.clsWeb(json_source_str)
            en_AcctName = x.getResponse(EncryptMode)
        else:
            en_AcctName = ''

        return en_AcctName

    def encrypt_Phone(self, row):
        # Declaring Local Variable
        en_Phone = ''

        # Capturing essential values
        EncryptMode = self.EncryptMode
        lkp_phone = row['Phone']
        str_phone = str(lkp_phone)
        fil_phone = str_phone.strip()

        # Forming JSON String for this field
        json_source_str = '{"dataGroup":"GrDet","data":"' + fil_phone + '","dataTemplate":"subGrPhone"}'

        # Identifying Length of the field
        len_acct_nbr = len(fil_phone)

        # This will trigger the service if it has valid data
        if len_acct_nbr > 0:
            x = cw.clsWeb(json_source_str)
            en_Phone = x.getResponse(EncryptMode)
        else:
            en_Phone = ''

        return en_Phone

    def encrypt_Email(self, row):
        # Declaring Local Variable
        en_Email = ''

        # Capturing essential values
        EncryptMode = self.EncryptMode
        lkp_email = row['Email']
        str_email = str(lkp_email)
        fil_email = str_email.strip()

        # Forming JSON String for this field
        json_source_str = '{"dataGroup":"GrDet","data":"' + fil_email + '","dataTemplate":"subGrEmail"}'

        # Identifying Length of the field
        len_acct_nbr = len(fil_email)

        # This will trigger the service if it has valid data
        if len_acct_nbr > 0:
            x = cw.clsWeb(json_source_str)
            en_Email = x.getResponse(EncryptMode)
        else:
            en_Email = ''

        return en_Email

    # Lookup Methods for Decryption
    def decrypt_acctNbr(self, row):
        # Declaring Local Variable
        de_AcctNbr = ''
        json_source_str = ''

        # Capturing essential values
        EncryptMode = self.DecryptMode
        lkp_acctNbr = row['Acct_Nbr']
        str_acct_nbr = str(lkp_acctNbr)
        fil_acct_nbr = str_acct_nbr.strip()

        # Forming JSON String for this field
        json_source_str = '{"dataGroup":"GrDet","data":"' + fil_acct_nbr + '","dataTemplate":"subGrAcct_Nbr"}'

        # Identifying Length of the field
        len_acct_nbr = len(fil_acct_nbr)

        # This will trigger the service if it has valid data
        if len_acct_nbr > 0:
            x = cw.clsWeb(json_source_str)
            de_AcctNbr = x.getResponse(EncryptMode)
        else:
            de_AcctNbr = ''

        return de_AcctNbr

    def decrypt_Name(self, row):
        # Declaring Local Variable
        de_AcctName = ''

        # Capturing essential values
        EncryptMode = self.DecryptMode
        lkp_acctName = row['Name']
        str_acct_name = str(lkp_acctName)
        fil_acct_name = str_acct_name.strip()

        # Forming JSON String for this field
        json_source_str = '{"dataGroup":"GrDet","data":"' + fil_acct_name + '","dataTemplate":"subGrName"}'

        # Identifying Length of the field
        len_acct_nbr = len(fil_acct_name)

        # This will trigger the service if it has valid data
        if len_acct_nbr > 0:
            x = cw.clsWeb(json_source_str)
            de_AcctName = x.getResponse(EncryptMode)
        else:
            de_AcctName = ''

        return de_AcctName

    def decrypt_Phone(self, row):
        # Declaring Local Variable
        de_Phone = ''

        # Capturing essential values
        EncryptMode = self.DecryptMode
        lkp_phone = row['Phone']
        str_phone = str(lkp_phone)
        fil_phone = str_phone.strip()

        # Forming JSON String for this field
        json_source_str = '{"dataGroup":"GrDet","data":"' + fil_phone + '","dataTemplate":"subGrPhone"}'

        # Identifying Length of the field
        len_acct_nbr = len(fil_phone)

        # This will trigger the service if it has valid data
        if len_acct_nbr > 0:
            x = cw.clsWeb(json_source_str)
            de_Phone = x.getResponse(EncryptMode)
        else:
            de_Phone = ''

        return de_Phone

    def decrypt_Email(self, row):
        # Declaring Local Variable
        de_Email = ''

        # Capturing essential values
        EncryptMode = self.DecryptMode
        lkp_email = row['Email']
        str_email = str(lkp_email)
        fil_email = str_email.strip()

        # Forming JSON String for this field
        json_source_str = '{"dataGroup":"GrDet","data":"' + fil_email + '","dataTemplate":"subGrEmail"}'

        # Identifying Length of the field
        len_acct_nbr = len(fil_email)

        # This will trigger the service if it has valid data
        if len_acct_nbr > 0:
            x = cw.clsWeb(json_source_str)
            de_Email = x.getResponse(EncryptMode)
        else:
            de_Email = ''

        return de_Email

    def getEncrypt(self, df_payload):
        try:
            df_input = p.DataFrame()
            df_fin = p.DataFrame()

            # Assigning Target File Basic Name
            df_input = df_payload

            # Checking total count of rows
            count_row = df_input.shape[0]
            print('Total number of records to process:: ', count_row)

            # Deriving rows
            df_input['Encrypt_Acct_Nbr'] = df_input.apply(lambda row: self.encrypt_acctNbr(row), axis=1)
            df_input['Encrypt_Name'] = df_input.apply(lambda row: self.encrypt_Name(row), axis=1)
            df_input['Encrypt_Phone'] = df_input.apply(lambda row: self.encrypt_Phone(row), axis=1)
            df_input['Encrypt_Email'] = df_input.apply(lambda row: self.encrypt_Email(row), axis=1)

            # Dropping original columns
            df_input.drop(['Acct_Nbr', 'Name', 'Phone', 'Email'], axis=1, inplace=True)

            # Renaming new columns with the old column names
            df_input.rename(columns={'Encrypt_Acct_Nbr':'Acct_Nbr'}, inplace=True)
            df_input.rename(columns={'Encrypt_Name': 'Name'}, inplace=True)
            df_input.rename(columns={'Encrypt_Phone': 'Phone'}, inplace=True)
            df_input.rename(columns={'Encrypt_Email': 'Email'}, inplace=True)

            # New Column List Orders
            column_order = ['Acct_Nbr', 'Name', 'Acct_Addr_1', 'Acct_Addr_2', 'Phone', 'Email', 'Serial_No']
            df_fin = df_input.reindex(column_order, axis=1)

            return df_fin
        except Exception as e:
            df_error = p.DataFrame({'Acct_Nbr':str(e), 'Name':'', 'Acct_Addr_1':'', 'Acct_Addr_2':'', 'Phone':'', 'Email':'', 'Serial_No':''})

            return df_error


    def getDecrypt(self, df_encrypted_payload):
        try:
            df_input = p.DataFrame()
            df_fin = p.DataFrame()

            # Assigning Target File Basic Name
            df_input = df_encrypted_payload

            # Checking total count of rows
            count_row = df_input.shape[0]
            print('Total number of records to process:: ', count_row)


            # Deriving rows
            df_input['Decrypt_Acct_Nbr'] = df_input.apply(lambda row: self.decrypt_acctNbr(row), axis=1)
            df_input['Decrypt_Name'] = df_input.apply(lambda row: self.decrypt_Name(row), axis=1)
            df_input['Decrypt_Phone'] = df_input.apply(lambda row: self.decrypt_Phone(row), axis=1)
            df_input['Decrypt_Email'] = df_input.apply(lambda row: self.decrypt_Email(row), axis=1)

            # Dropping original columns
            df_input.drop(['Acct_Nbr', 'Name', 'Phone', 'Email'], axis=1, inplace=True)

            # Renaming new columns with the old column names
            df_input.rename(columns={'Decrypt_Acct_Nbr':'Acct_Nbr'}, inplace=True)
            df_input.rename(columns={'Decrypt_Name': 'Name'}, inplace=True)
            df_input.rename(columns={'Decrypt_Phone': 'Phone'}, inplace=True)
            df_input.rename(columns={'Decrypt_Email': 'Email'}, inplace=True)

            # New Column List Orders
            column_order = ['Acct_Nbr', 'Name', 'Acct_Addr_1', 'Acct_Addr_2', 'Phone', 'Email']
            df_fin = df_input.reindex(column_order, axis=1)

            return df_fin
        except Exception as e:
            df_error = p.DataFrame({'Acct_Nbr':str(e), 'Name':'', 'Acct_Addr_1':'', 'Acct_Addr_2':'', 'Phone':'', 'Email':''})

            return df_error

Key lines to discuss –

Main two methods, we’ll be looking into & they are –

a. getEncrypt

b. getDecrypt

However, these two functions constructions are identical in nature. One is for encryption & the other one is decryption.

# Deriving rows
df_input['Encrypt_Acct_Nbr'] = df_input.apply(lambda row: self.encrypt_acctNbr(row), axis=1)
df_input['Encrypt_Name'] = df_input.apply(lambda row: self.encrypt_Name(row), axis=1)
df_input['Encrypt_Phone'] = df_input.apply(lambda row: self.encrypt_Phone(row), axis=1)
df_input['Encrypt_Email'] = df_input.apply(lambda row: self.encrypt_Email(row), axis=1)

As you can see, the application is processing row-by-row & column-by-column data transformations using look-up functions.

# Dropping original columns
df_input.drop(['Acct_Nbr', 'Name', 'Phone', 'Email'], axis=1, inplace=True)

As the comment suggested, the application is dropping all the unencrypted source columns.

# Renaming new columns with the old column names
df_input.rename(columns={'Encrypt_Acct_Nbr':'Acct_Nbr'}, inplace=True)
df_input.rename(columns={'Encrypt_Name': 'Name'}, inplace=True)
df_input.rename(columns={'Encrypt_Phone': 'Phone'}, inplace=True)
df_input.rename(columns={'Encrypt_Email': 'Email'}, inplace=True)

Once, the application drops all the source columns, it will rename the new column names back to old columns & based on this data will be merged with the rest of the data from the source csv.

# New Column List Orders
column_order = ['Acct_Nbr', 'Name', 'Acct_Addr_1', 'Acct_Addr_2', 'Phone', 'Email', 'Serial_No']
df_fin = df_input.reindex(column_order, axis=1)

Once, the application finished doing all these transformations, it will now re-sequence the order of the columns, which will create the same column order as it’s source csv files.

Similar logic is applicable for the decryption as well.

As we know, there are many look-up methods take part as part of this drive.

encrypt_acctNbr, encrypt_Name, encrypt_Phone, encrypt_Email
decrypt_acctNbr, decrypt_Name, decrypt_Phone, decrypt_Email

We’ll discuss only one method as these are completely identical.

# Capturing essential values
EncryptMode = self.EncryptMode
lkp_acctNbr = row['Acct_Nbr']
str_acct_nbr = str(lkp_acctNbr)
fil_acct_nbr = str_acct_nbr.strip()

From the row, our application is extracting the relevant column. In this case, it is Acct_Nbr. And, then converts it to string & remove any unnecessary white space from it.

# Forming JSON String for this field
json_source_str = '{"dataGroup":"GrDet","data":"' + fil_acct_nbr + '","dataTemplate":"subGrAcct_Nbr"}'

Once extracted, the application will build the target JON string as per column data.

# Identifying Length of the field
len_acct_nbr = len(fil_acct_nbr)

# This will trigger the service if it has valid data
if len_acct_nbr > 0:
    x = cw.clsWeb(json_source_str)
    en_AcctNbr = x.getResponse(EncryptMode)
else:
    en_AcctNbr = ''

Based on the length of the extracted value, our application will trigger the individual JSON requests & will receive the data frame in response.

9. clsParallel.py (This script will use the queue to make asynchronous calls & perform the same encryption & decryption. Hence, the name comes into the picture.)

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
############################################
#### Written By: SATYAKI DE             ####
#### Written On: 10-Feb-2019            ####
#### Package Flask package needs to     ####
#### install in order to run this       ####
#### script.                            ####
####                                    ####
#### Objective: This script will        ####
#### initiate the encrypt/decrypt class ####
#### based on client supplied data.     ####
#### This script will use the advance   ####
#### queue & asynchronus calls to the   ####
#### API Server to process Encryption & ####
#### Decryption on our csv files.       ####
############################################
import pandas as p
import clsWebService as cw
import datetime
from clsParam import clsParam as cf
from multiprocessing import Lock, Process, Queue, freeze_support, JoinableQueue
import gc
import signal
import time
import os
import queue
import asyncio

# Declaring Global Variable
q = Queue()
lock = Lock()

finished_task = JoinableQueue()
pending_task = JoinableQueue()

sp_fin_dict = {}
dp_fin_dict = {}

# Disbling Warnings
def warn(*args, **kwargs):
    pass
import warnings
warnings.warn = warn

class clsParallel(object):
    def __init__(self):
        self.path = cf.config['PATH']
        self.EncryptMode = str(cf.config['ENCRYPT_MODE'])
        self.DecryptMode = str(cf.config['DECRYPT_MODE'])
        self.num_worker_process = int(cf.config['NUM_OF_THREAD'])
        self.lock = Lock()

    # Lookup Methods for Encryption
    def encrypt_acctNbr(self, row):
        # Declaring Local Variable
        en_AcctNbr = ''
        json_source_str = ''

        # Capturing essential values
        EncryptMode = self.EncryptMode
        lkp_acctNbr = row['Acct_Nbr']
        str_acct_nbr = str(lkp_acctNbr)
        fil_acct_nbr = str_acct_nbr.strip()

        # Forming JSON String for this field
        json_source_str = '{"dataGroup":"GrDet","data":"' + fil_acct_nbr + '","dataTemplate":"subGrAcct_Nbr"}'

        # Identifying Length of the field
        len_acct_nbr = len(fil_acct_nbr)

        # This will trigger the service if it has valid data
        if len_acct_nbr > 0:
            x = cw.clsWeb(json_source_str)
            en_AcctNbr = x.getResponse(EncryptMode)
        else:
            en_AcctNbr = ''

        fil_acct_nbr = ''

        return en_AcctNbr

    def encrypt_Name(self, row):
        # Declaring Local Variable
        en_AcctName = ''

        # Capturing essential values
        EncryptMode = self.EncryptMode
        lkp_acctName = row['Name']
        str_acct_name = str(lkp_acctName)
        fil_acct_name = str_acct_name.strip()

        # Forming JSON String for this field
        json_source_str = '{"dataGroup":"GrDet","data":"' + fil_acct_name + '","dataTemplate":"subGrName"}'

        # Identifying Length of the field
        len_acct_nbr = len(fil_acct_name)

        # This will trigger the service if it has valid data
        if len_acct_nbr > 0:
            x = cw.clsWeb(json_source_str)
            en_AcctName = x.getResponse(EncryptMode)
        else:
            en_AcctName = ''

        return en_AcctName

    def encrypt_Phone(self, row):
        # Declaring Local Variable
        en_Phone = ''

        # Capturing essential values
        EncryptMode = self.EncryptMode
        lkp_phone = row['Phone']
        str_phone = str(lkp_phone)
        fil_phone = str_phone.strip()

        # Forming JSON String for this field
        json_source_str = '{"dataGroup":"GrDet","data":"' + fil_phone + '","dataTemplate":"subGrPhone"}'

        # Identifying Length of the field
        len_acct_nbr = len(fil_phone)

        # This will trigger the service if it has valid data
        if len_acct_nbr > 0:
            x = cw.clsWeb(json_source_str)
            en_Phone = x.getResponse(EncryptMode)
        else:
            en_Phone = ''

        return en_Phone

    def encrypt_Email(self, row):
        # Declaring Local Variable
        en_Email = ''

        # Capturing essential values
        EncryptMode = self.EncryptMode
        lkp_email = row['Email']
        str_email = str(lkp_email)
        fil_email = str_email.strip()

        # Forming JSON String for this field
        json_source_str = '{"dataGroup":"GrDet","data":"' + fil_email + '","dataTemplate":"subGrEmail"}'

        # Identifying Length of the field
        len_acct_nbr = len(fil_email)

        # This will trigger the service if it has valid data
        if len_acct_nbr > 0:
            x = cw.clsWeb(json_source_str)
            en_Email = x.getResponse(EncryptMode)
        else:
            en_Email = ''

        return en_Email

    # Lookup Methods for Decryption
    def decrypt_acctNbr(self, row):
        # Declaring Local Variable
        de_AcctNbr = ''
        json_source_str = ''

        # Capturing essential values
        EncryptMode = self.DecryptMode
        lkp_acctNbr = row['Acct_Nbr']
        str_acct_nbr = str(lkp_acctNbr)
        fil_acct_nbr = str_acct_nbr.strip()

        # Forming JSON String for this field
        json_source_str = '{"dataGroup":"GrDet","data":"' + fil_acct_nbr + '","dataTemplate":"subGrAcct_Nbr"}'

        # Identifying Length of the field
        len_acct_nbr = len(fil_acct_nbr)

        # This will trigger the service if it has valid data
        if len_acct_nbr > 0:
            x = cw.clsWeb(json_source_str)
            de_AcctNbr = x.getResponse(EncryptMode)
        else:
            de_AcctNbr = ''

        return de_AcctNbr

    def decrypt_Name(self, row):
        # Declaring Local Variable
        de_AcctName = ''

        # Capturing essential values
        EncryptMode = self.DecryptMode
        lkp_acctName = row['Name']
        str_acct_name = str(lkp_acctName)
        fil_acct_name = str_acct_name.strip()

        # Forming JSON String for this field
        json_source_str = '{"dataGroup":"GrDet","data":"' + fil_acct_name + '","dataTemplate":"subGrName"}'

        # Identifying Length of the field
        len_acct_nbr = len(fil_acct_name)

        # This will trigger the service if it has valid data
        if len_acct_nbr > 0:
            x = cw.clsWeb(json_source_str)
            de_AcctName = x.getResponse(EncryptMode)
        else:
            de_AcctName = ''

        return de_AcctName

    def decrypt_Phone(self, row):
        # Declaring Local Variable
        de_Phone = ''

        # Capturing essential values
        EncryptMode = self.DecryptMode
        lkp_phone = row['Phone']
        str_phone = str(lkp_phone)
        fil_phone = str_phone.strip()

        # Forming JSON String for this field
        json_source_str = '{"dataGroup":"GrDet","data":"' + fil_phone + '","dataTemplate":"subGrPhone"}'

        # Identifying Length of the field
        len_acct_nbr = len(fil_phone)

        # This will trigger the service if it has valid data
        if len_acct_nbr > 0:
            x = cw.clsWeb(json_source_str)
            de_Phone = x.getResponse(EncryptMode)
        else:
            de_Phone = ''

        return de_Phone

    def decrypt_Email(self, row):
        # Declaring Local Variable
        de_Email = ''

        # Capturing essential values
        EncryptMode = self.DecryptMode
        lkp_email = row['Email']
        str_email = str(lkp_email)
        fil_email = str_email.strip()

        # Forming JSON String for this field
        json_source_str = '{"dataGroup":"GrDet","data":"' + fil_email + '","dataTemplate":"subGrEmail"}'

        # Identifying Length of the field
        len_acct_nbr = len(fil_email)

        # This will trigger the service if it has valid data
        if len_acct_nbr > 0:
            x = cw.clsWeb(json_source_str)
            de_Email = x.getResponse(EncryptMode)
        else:
            de_Email = ''

        return de_Email

    def getEncrypt(self, df_dict):
        try:
            en_fin_dict = {}

            df_input = p.DataFrame()
            df_fin = p.DataFrame()

            # Assigning Target File Basic Name
            for k, v in df_dict.items():
                Process_Name = k
                df_input = v

            # Checking total count of rows
            count_row = int(df_input.shape[0])
            print('Part number of records to process:: ', count_row)

            if count_row > 0:

                # Deriving rows
                df_input['Encrypt_Acct_Nbr'] = df_input.apply(lambda row: self.encrypt_acctNbr(row), axis=1)
                df_input['Encrypt_Name'] = df_input.apply(lambda row: self.encrypt_Name(row), axis=1)
                df_input['Encrypt_Phone'] = df_input.apply(lambda row: self.encrypt_Phone(row), axis=1)
                df_input['Encrypt_Email'] = df_input.apply(lambda row: self.encrypt_Email(row), axis=1)

                # Dropping original columns
                df_input.drop(['Acct_Nbr', 'Name', 'Phone', 'Email'], axis=1, inplace=True)

                # Renaming new columns with the old column names
                df_input.rename(columns={'Encrypt_Acct_Nbr':'Acct_Nbr'}, inplace=True)
                df_input.rename(columns={'Encrypt_Name': 'Name'}, inplace=True)
                df_input.rename(columns={'Encrypt_Phone': 'Phone'}, inplace=True)
                df_input.rename(columns={'Encrypt_Email': 'Email'}, inplace=True)

                # New Column List Orders
                column_order = ['Acct_Nbr', 'Name', 'Acct_Addr_1', 'Acct_Addr_2', 'Phone', 'Email', 'Serial_No']
                df_fin = df_input.reindex(column_order, axis=1)

                sp_fin_dict[Process_Name] = df_fin

            return sp_fin_dict
        except Exception as e:
            df_error = p.DataFrame({'Acct_Nbr':str(e), 'Name':'', 'Acct_Addr_1':'', 'Acct_Addr_2':'', 'Phone':'', 'Email':'', 'Serial_No':''})
            sp_fin_dict[Process_Name] = df_error

            return sp_fin_dict

    async def produceEncr(self, queue, l_dict):

        m_dict = {}

        m_dict = self.getEncrypt(l_dict)

        for k, v in m_dict.items():
            item = k
            print('producing {}...'.format(item))

        await queue.put(m_dict)


    async def consumeEncr(self, queue):
        result_dict = {}

        while True:
            # wait for an item from the producer
            sp_fin_dict.update(await queue.get())

            # process the item
            for k, v in sp_fin_dict.items():
                item = k
                print('consuming {}...'.format(item))

            # Notify the queue that the item has been processed
            queue.task_done()


    async def runEncrypt(self, n, df_input):
        l_dict = {}

        queue = asyncio.Queue()
        # schedule the consumer
        consumer = asyncio.ensure_future(self.consumeEncr(queue))

        start_pos = 0
        end_pos = 0

        num_worker_process = n

        count_row = df_input.shape[0]
        print('Total number of records to process:: ', count_row)

        interval = int(count_row / num_worker_process) + 1
        actual_worker_task = int(count_row / interval) + 1

        for i in range(actual_worker_task):
            name = 'Task-' + str(i)

            if ((start_pos + interval) < count_row):
                end_pos = start_pos + interval
            else:
                end_pos = start_pos + (count_row - start_pos)

            print("start_pos: ", start_pos)
            print("end_pos: ", end_pos)

            split_df = df_input.iloc[start_pos:end_pos]
            l_dict[name] = split_df

            if ((start_pos > count_row) | (start_pos == count_row)):
                break
            else:
                start_pos = start_pos + interval

            # run the producer and wait for completion
            await self.produceEncr(queue, l_dict)
            # wait until the consumer has processed all items
            await queue.join()

        # the consumer is still awaiting for an item, cancel it
        consumer.cancel()

        return sp_fin_dict


    def getEncryptParallel(self, df_payload):

        l_dict = {}
        data_dict = {}
        min_val_list = {}
        cnt = 1
        num_worker_process = self.num_worker_process
        actual_worker_task = 0
        number_of_processes = 4

        processes = []

        split_df = p.DataFrame()
        df_ret = p.DataFrame()
        dummy_df = p.DataFrame()

        # Assigning Target File Basic Name
        df_input = df_payload

        # Checking total count of rows
        count_row = df_input.shape[0]
        print('Total number of records to process:: ', count_row)

        interval = int(count_row / num_worker_process) + 1
        actual_worker_task = int(count_row/interval) + 1

        loop = asyncio.get_event_loop()
        loop.run_until_complete(self.runEncrypt(actual_worker_task, df_input))
        loop.close()

        for k, v in sp_fin_dict.items():
            min_val_list[int(k.replace('Task-', ''))] = v

        min_val = min(min_val_list, key=int)
        print("Minimum Index Value: ", min_val)

        for k, v in sorted(sp_fin_dict.items(), key=lambda k: int(k[0].replace('Task-', ''))):
            if int(k.replace('Task-', '')) == min_val:
                df_ret = sp_fin_dict[k]
            else:
                d_frames = [df_ret, sp_fin_dict[k]]
                df_ret = p.concat(d_frames)

        return df_ret

    def getDecrypt(self, df_encrypted_dict):
        try:
            de_fin_dict = {}

            df_input = p.DataFrame()
            df_fin = p.DataFrame()

            # Assigning Target File Basic Name
            for k, v in df_encrypted_dict.items():
                Process_Name = k
                df_input = v

            # Checking total count of rows
            count_row = int(df_input.shape[0])
            print('Part number of records to process:: ', count_row)

            if count_row > 0:

                # Deriving rows
                df_input['Decrypt_Acct_Nbr'] = df_input.apply(lambda row: self.decrypt_acctNbr(row), axis=1)
                df_input['Decrypt_Name'] = df_input.apply(lambda row: self.decrypt_Name(row), axis=1)
                df_input['Decrypt_Phone'] = df_input.apply(lambda row: self.decrypt_Phone(row), axis=1)
                df_input['Decrypt_Email'] = df_input.apply(lambda row: self.decrypt_Email(row), axis=1)

                # Dropping original columns
                df_input.drop(['Acct_Nbr', 'Name', 'Phone', 'Email'], axis=1, inplace=True)

                # Renaming new columns with the old column names
                df_input.rename(columns={'Decrypt_Acct_Nbr':'Acct_Nbr'}, inplace=True)
                df_input.rename(columns={'Decrypt_Name': 'Name'}, inplace=True)
                df_input.rename(columns={'Decrypt_Phone': 'Phone'}, inplace=True)
                df_input.rename(columns={'Decrypt_Email': 'Email'}, inplace=True)

                # New Column List Orders
                column_order = ['Acct_Nbr', 'Name', 'Acct_Addr_1', 'Acct_Addr_2', 'Phone', 'Email', 'Serial_No']
                df_fin = df_input.reindex(column_order, axis=1)

                de_fin_dict[Process_Name] = df_fin

            return de_fin_dict

        except Exception as e:
            df_error = p.DataFrame({'Acct_Nbr': str(e), 'Name': '', 'Acct_Addr_1': '', 'Acct_Addr_2': '', 'Phone': '', 'Email': '', 'Serial_No': ''})
            de_fin_dict[Process_Name] = df_error

            return de_fin_dict

    async def produceDecr(self, queue, l_dict):

        m_dict = {}

        m_dict = self.getDecrypt(l_dict)

        for k, v in m_dict.items():
            item = k
            print('producing {}...'.format(item))

        await queue.put(m_dict)


    async def consumeDecr(self, queue):
        result_dict = {}

        while True:
            # wait for an item from the producer
            dp_fin_dict.update(await queue.get())

            # process the item
            for k, v in dp_fin_dict.items():
                item = k
                print('consuming {}...'.format(item))

            # Notify the queue that the item has been processed
            queue.task_done()


    async def runDecrypt(self, n, df_input):
        l_dict = {}

        queue = asyncio.Queue()
        # schedule the consumer
        consumerDe = asyncio.ensure_future(self.consumeDecr(queue))

        start_pos = 0
        end_pos = 0

        num_worker_process = n

        count_row = df_input.shape[0]
        print('Total number of records to process:: ', count_row)

        interval = int(count_row / num_worker_process) + 1
        actual_worker_task = int(count_row / interval) + 1

        for i in range(actual_worker_task):
            name = 'Task-' + str(i)

            if ((start_pos + interval) < count_row):
                end_pos = start_pos + interval
            else:
                end_pos = start_pos + (count_row - start_pos)

            print("start_pos: ", start_pos)
            print("end_pos: ", end_pos)

            split_df = df_input.iloc[start_pos:end_pos]
            l_dict[name] = split_df

            if ((start_pos > count_row) | (start_pos == count_row)):
                break
            else:
                start_pos = start_pos + interval

            # run the producer and wait for completion
            await self.produceDecr(queue, l_dict)
            # wait until the consumer has processed all items
            await queue.join()

        # the consumer is still awaiting for an item, cancel it
        consumerDe.cancel()

        return dp_fin_dict


    def getDecryptParallel(self, df_payload):

        l_dict = {}
        data_dict = {}
        min_val_list = {}
        cnt = 1
        num_worker_process = self.num_worker_process
        actual_worker_task = 0
        number_of_processes = 4

        processes = []

        split_df = p.DataFrame()
        df_ret_1 = p.DataFrame()
        dummy_df = p.DataFrame()

        # Assigning Target File Basic Name
        df_input = df_payload

        # Checking total count of rows
        count_row = df_input.shape[0]
        print('Total number of records to process:: ', count_row)

        interval = int(count_row / num_worker_process) + 1
        actual_worker_task = int(count_row/interval) + 1

        loop_1 = asyncio.new_event_loop()
        asyncio.set_event_loop(asyncio.new_event_loop())
        loop_2 = asyncio.get_event_loop()
        loop_2.run_until_complete(self.runDecrypt(actual_worker_task, df_input))
        loop_2.close()

        for k, v in dp_fin_dict.items():
            min_val_list[int(k.replace('Task-', ''))] = v

        min_val = min(min_val_list, key=int)
        print("Minimum Index Value: ", min_val)

        for k, v in sorted(dp_fin_dict.items(), key=lambda k: int(k[0].replace('Task-', ''))):
            if int(k.replace('Task-', '')) == min_val:
                df_ret_1 = dp_fin_dict[k]
            else:
                d_frames = [df_ret_1, dp_fin_dict[k]]
                df_ret_1 = p.concat(d_frames)

        return df_ret_1

I don’t want to discuss any more look-up methods as the post is already pretty big. Only address a few critical lines

Under getEncryptParallel, the following lines are essential –

# Checking total count of rows
count_row = df_input.shape[0]
print('Total number of records to process:: ', count_row)

interval = int(count_row / num_worker_process) + 1
actual_worker_task = int(count_row/interval) + 1

Based on the dataframe total number of records, our application will split that main dataframe into parts of sub dataframe & then pass them using queue by asynchronous queue calls.

loop = asyncio.get_event_loop()
loop.run_until_complete(self.runEncrypt(actual_worker_task, df_input))
loop.close()

Initiating our queue methods & passing our dataframe to it.

for k, v in sorted(sp_fin_dict.items(), key=lambda k: int(k[0].replace('Task-', ''))):
    if int(k.replace('Task-', '')) == min_val:
        df_ret = sp_fin_dict[k]
    else:
        d_frames = [df_ret, sp_fin_dict[k]]
        df_ret = p.concat(d_frames)

Our application is sending & receiving data using the dictionary. The reason is – we’re not expecting data that we may get it from our server in sequence. Instead, we’re hoping the data will be random. Hence, using keys, we’re maintaining our final sequence & that will ensure our application to joining back to the correct sets of source data, which won’t be the candidate for any encryption/decryption.

Let’s discuss runEncrypt method.

for i in range(actual_worker_task):
    name = 'Task-' + str(i)

    if ((start_pos + interval) < count_row):
        end_pos = start_pos + interval
    else:
        end_pos = start_pos + (count_row - start_pos)

    print("start_pos: ", start_pos)
    print("end_pos: ", end_pos)

    split_df = df_input.iloc[start_pos:end_pos]
    l_dict[name] = split_df

    if ((start_pos > count_row) | (start_pos == count_row)):
        break
    else:
        start_pos = start_pos + interval

Here, our application is splitting our source data frame into multiple sub dataframe & then it can be processed in parallel using queues.

# run the producer and wait for completion
await self.produceEncr(queue, l_dict)
# wait until the consumer has processed all items
await queue.join()

Invoking the encryption-decryption process using queues. The last line is significant. The queue will not destroy until all the item produced/place into the queue are not consumed. Hence, your main program will wait until it processes all the records of your dataframe.

Two methods named produceEncr & consumeEncr mainly used for placing an item inside the queue & then after encryption/decryption it will retrieve it from the queue.

Few important lines from both the methods are –

#produceEncr
await queue.put(m_dict)

#consumeEncr
# wait for an item from the producer
sp_fin_dict.update(await queue.get())
# Notify the queue that the item has been processed
queue.task_done()

From the first two lines, one can see that the application will place its item into the queue. Rests are the lines from the other methods. Our application is pouring the data into the dictionary, which will be returned to our calling methods. The last line is significantly essential. Without the task_done process, the queue will continue to wait for upcoming items. Hence, that will trigger infinite wait or sometimes deadlock.

10. callClient.py (This script will trigger both the serial & parallel process of encryption one by one & finally capture some statistics. Hence, the name comes into the picture.)

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
############################################
#### Written By: SATYAKI DE             ####
#### Written On: 10-Feb-2019            ####
#### Package Flask package needs to     ####
#### install in order to run this       ####
#### script.                            ####
####                                    ####
#### Objective: This script will        ####
#### initiate the encrypt/decrypt class ####
#### based on client supplied data.     ####
############################################
import pandas as p
import clsSerial as cs
import time
import datetime
from clsParam import clsParam as cf
import clsParallel as cp
import sys

def main():
    source_df = p.DataFrame()
    encrypted_df = p.DataFrame()
    source_encrypted_df = p.DataFrame()
    decrypted_df = p.DataFrame()
    encrypted_parallel_df = p.DataFrame()
    source_encrypted_parallel_df = p.DataFrame()
    decrypted_parallel_df = p.DataFrame()

    ###############################################################################
    #####                Start Of Serial Encryption Methods                  ######
    ###############################################################################

    print("-" * 157)

    startEnTime = time.time()
    srcFile = 'acct_addr_20180106'
    srcFileWithPath = str(cf.config['SRC_DIR']) + srcFile + '.csv'

    print("Calling Serial Process to Encrypt!")

    # Reading source file
    source_df = p.read_csv(srcFileWithPath, index_col=False)

    # Calling Encrypt Methods
    x = cs.clsSerial()
    encrypted_df = x.getEncrypt(source_df)

    # Handling Multiple source files
    var = datetime.datetime.now().strftime("%H.%M.%S")
    print('Target File Extension will contain the following:: ', var)

    targetFile = srcFile + '_Serial_'
    taregetFileWithPath = str(cf.config['FIN_DIR']) + targetFile + var + '.csv'

    # Finally Storing them into csv
    encrypted_df.to_csv(taregetFileWithPath, index=False)

    endEnTime = time.time()
    z1 = str(endEnTime - startEnTime)
    print("Over All Encrypt Process Time:", z1)

    time.sleep(20)

    ###############################################################################
    #####                Start Of Serial Decryption Methods                  ######
    ###############################################################################

    print("-" * 157)

    startDeTime = time.time()
    srcFileWithPath = taregetFileWithPath

    print("Calling Serial Process to Decrypt!")

    # Reading source file
    source_encrypted_df = p.read_csv(srcFileWithPath, index_col=False)

    # Calling Encrypt Methods
    x = cs.clsSerial()
    decrypted_df = x.getDecrypt(source_encrypted_df)

    targetFile = srcFile + '_restored_'
    taregetFileWithPath = str(cf.config['FIN_DIR']) + targetFile + var + '.csv'

    # Finally Storing them into csv
    decrypted_df.to_csv(taregetFileWithPath, index=False)

    endDeTime = time.time()
    z2 = str(endDeTime - startDeTime)
    print("Over All Decrypt Process Time:", z2)

    print("-" * 157)

    ###############################################################################
    #####        End Of Serial Encryption/Decryption Methods                 ######
    ###############################################################################

    time.sleep(20)

    ###############################################################################
    #####                Start Of Parallel Encryption Methods                ######
    ###############################################################################

    print("-" * 157)

    startEnTime = time.time()
    srcFileWithPath = str(cf.config['SRC_DIR']) + srcFile + '.csv'

    print("Calling Serial Process to Encrypt!")

    # Reading source file
    source_df = p.read_csv(srcFileWithPath, index_col=False)

    # Calling Encrypt Methods
    x = cp.clsParallel()
    encrypted_parallel_df = x.getEncryptParallel(source_df)

    # Handling Multiple source files
    var = datetime.datetime.now().strftime("%H.%M.%S")
    print('Target File Extension will contain the following:: ', var)

    targetFile = srcFile + '_Parallel_'
    taregetFileWithPath = str(cf.config['FIN_DIR']) + targetFile + var + '.csv'

    # Finally Storing them into csv
    encrypted_parallel_df.to_csv(taregetFileWithPath, index=False)

    endEnTime = time.time()
    z3 = str(endEnTime - startEnTime)
    print("Over All Encrypt Process Time:", z3)

    time.sleep(20)

    ###############################################################################
    #####                Start Of Serial Decryption Methods                  ######
    ###############################################################################

    print("-" * 157)

    startDeTime = time.time()
    srcFileWithPath = taregetFileWithPath

    print("Calling Parallel Process to Decrypt!")

    # Reading source file
    source_encrypted_parallel_df = p.read_csv(srcFileWithPath, index_col=False)

    # Calling Encrypt Methods
    x = cp.clsParallel()
    decrypted_parallel_df = x.getDecryptParallel(source_encrypted_parallel_df)

    targetFile = srcFile + '_restored_'
    taregetFileWithPath = str(cf.config['FIN_DIR']) + targetFile + var + '.csv'

    # Finally Storing them into csv
    decrypted_parallel_df.to_csv(taregetFileWithPath, index=False)

    endDeTime = time.time()
    z4 = str(endDeTime - startDeTime)
    print("Over All Decrypt Process Time:", z4)

    print("-" * 157)

    ###############################################################################
    #####        End Of Parallel Encryption/Decryption Methods               ######
    ###############################################################################

    ###############################################################################
    #####    Final Statistics between Serial & Parallel loading.             ######
    ###############################################################################

    print("-" * 157)
    print("Serial Encryption:: ", z1)
    print("Serial Decryption:: ", z2)
    print("-" * 157)
    print("Parallel Encryption:: ", z3)
    print("Parallel Decryption:: ", z4)
    print("-" * 157)


if __name__ == '__main__':
    main()

As you can see, we’ve triggered both the application using the main callable scripts.

Let’s explore the output –

Windows:

Win_Files

Mac:

MAC_Files

Note that you have to open two different windows or MAC terminal. One will trigger the server & others will trigger the client to simulate this.

Server:

Win_Server

Clients:

Win:

Win_Run

MAC:

MAC_Run

So, finally, we’ve achieved our goal. So, today we’ve done a bit long but beneficial & advanced concepts of crossover stones from our python verse. 🙂

Lot more innovative posts are coming.

Till then – Happy Avenging!

Encryption/Decryption, JSON, API, Flask Framework in Python (Crossover between Reality Stone & Time Stone in Python Verse)

Hi Guys,

Today, we’ll be looking into another exciting installment of cross-over between Reality Stone & Timestone from the python verse.

We’ll be exploring Encryption/Decryption implemented using the Flask Framework Server component. We would like to demonstrate this Encrypt/Decrypt features as Server API & then we can call it from clients like Postman to view the response.

So, here are primary focus will be implementing this in Server-side rather than the client-side.

However, there is a catch. We would like to implement different kind of encryption or decryption based on our source data.

Let’s look into the sample data first –

sample_data_csv.jpg

As you can see, we intend to encrypt Account Number encryption with different salt compared to Name or Phone or Email. Hence, we would be using different salt to encrypt our sample data & get the desired encrypt/decrypt output.

From the above data, we can create the following types of JSON payload –

Sample_JSon_Test_Data

Let’s explore –

Before we start, we would like to show you the directory structure of Windows & MAC as we did the same in my earlier post as well.

windows_vs_mac.jpg

Following are the scripts that we’re using to develop this server applications & they are as follows –

1. clsConfigServer.py (This script contains all the parameters of the server.)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
###########################################
#### Written By: SATYAKI DE        ########
#### Written On: 10-Feb-2019       ########
####                               ########
#### Objective: Parameter File     ########
###########################################

import os
import platform as pl

# Checking with O/S system
os_det = pl.system()

class clsConfigServer(object):
    Curr_Path = os.path.dirname(os.path.realpath(__file__))

    if os_det == "Windows":
        config = {
            'FILE': 'acct_addr_20180112.csv',
            'SRC_FILE_PATH': Curr_Path + '\\' + 'src_file\\',
            'PROFILE_FILE_PATH': Curr_Path + '\\' + 'profile\\',
            'HOST_IP_ADDR': '0.0.0.0',
            'DEF_SALT': 'iooquzKtqLwUwXG3rModqj_fIl409vemWg9PekcKh2o=',
            'ACCT_NBR_SALT': 'iooquzKtqLwUwXG3rModqj_fIlpp1vemWg9PekcKh2o=',
            'NAME_SALT': 'iooquzKtqLwUwXG3rModqj_fIlpp1026Wg9PekcKh2o=',
            'PHONE_SALT': 'iooquzKtqLwUwXG3rMM0F5_fIlpp1026Wg9PekcKh2o=',
            'EMAIL_SALT': 'iooquzKtqLwU0653rMM0F5_fIlpp1026Wg9PekcKh2o='
        }
    else:
        config = {
            'FILE': 'acct_addr_20180112.csv',
            'SRC_FILE_PATH': Curr_Path + '/' + 'src_file/',
            'PROFILE_FILE_PATH': Curr_Path + '/' + 'profile/',
            'HOST_IP_ADDR': '0.0.0.0',
            'DEF_SALT': 'iooquzKtqLwUwXG3rModqj_fIl409vemWg9PekcKh2o=',
            'ACCT_NBR_SALT': 'iooquzKtqLwUwXG3rModqj_fIlpp1vemWg9PekcKh2o=',
            'NAME_SALT': 'iooquzKtqLwUwXG3rModqj_fIlpp1026Wg9PekcKh2o=',
            'PHONE_SALT': 'iooquzKtqLwUwXG3rMM0F5_fIlpp1026Wg9PekcKh2o=',
            'EMAIL_SALT': 'iooquzKtqLwU0653rMM0F5_fIlpp1026Wg9PekcKh2o='
        }

Key things to monitor –

'ACCT_NBR_SALT': 'iooquzKtqLwUwXG3rModqj_fIlpp1vemWg9PekcKh2o=',
'NAME_SALT': 'iooquzKtqLwUwXG3rModqj_fIlpp1026Wg9PekcKh2o=',
'PHONE_SALT': 'iooquzKtqLwUwXG3rMM0F5_fIlpp1026Wg9PekcKh2o=',
'EMAIL_SALT': 'iooquzKtqLwU0653rMM0F5_fIlpp1026Wg9PekcKh2o='

As mentioned, the different salt key’s defined for different kind of data.

2. clsEnDec.py (This script is a lighter version of encryption & decryption of our previously discussed script. Hence, we won’t discuss in details. You can refer my earlier post to understand the logic of this script.)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
###########################################
#### Written By: SATYAKI DE        ########
#### Written On: 25-Jan-2019       ########
#### Package Cryptography needs to ########
#### install in order to run this  ########
#### script.                       ########
####                               ########
#### Objective: This script will   ########
#### encrypt/decrypt based on the  ########
#### hidden supplied salt value.   ########
###########################################

from cryptography.fernet import Fernet

class clsEnDec(object):

    def __init__(self, token):
        # Calculating Key
        self.token = token

    def encrypt_str(self, data):
        try:
            # Capturing the Salt Information
            salt = self.token

            # Checking Individual Types inside the Dataframe
            cipher = Fernet(salt)
            encr_val = str(cipher.encrypt(bytes(data,'utf8'))).replace("b'","").replace("'","")

            return encr_val

        except Exception as e:
            x = str(e)
            print(x)
            encr_val = ''

            return encr_val

    def decrypt_str(self, data):
        try:
            # Capturing the Salt Information
            salt = self.token

            # Checking Individual Types inside the Dataframe
            cipher = Fernet(salt)
            decr_val = str(cipher.decrypt(bytes(data,'utf8'))).replace("b'","").replace("'","")

            return decr_val

        except Exception as e:
            x = str(e)
            print(x)
            decr_val = ''

            return decr_val

3. clsFlask.py (This is the main server script that will the encrypt/decrypt class from our previous script. This script will capture the requested JSON from the client, who posted from the clients like another python script or third-party tools like Postman.)

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
###########################################
#### Written By: SATYAKI DE            ####
#### Written On: 25-Jan-2019           ####
#### Package Flask package needs to    ####
#### install in order to run this      ####
#### script.                           ####
####                                   ####
#### Objective: This script will       ####
#### encrypt/decrypt based on the      ####
#### supplied salt value. Also,        ####
#### this will capture the individual  ####
#### element & stored them into JSON   ####
#### variables using flask framework.  ####
###########################################

from clsConfigServer import clsConfigServer as csf
import clsEnDec as cen

class clsFlask(object):
    def __init__(self):
        self.xtoken = str(csf.config['DEF_SALT'])

    def getEncryptProcess(self, dGroup, input_data, dTemplate):
        try:
            # It is sending default salt value
            xtoken = self.xtoken

            # Capturing the individual element
            dGroup = dGroup
            input_data = input_data
            dTemplate = dTemplate

            # This will check the mandatory json elements
            if ((dGroup != '') & (dTemplate != '')):

                # Based on the Group & Element it will fetch the salt
                # Based on the specific salt it will encrypt the data
                if ((dGroup == 'GrDet') & (dTemplate == 'subGrAcct_Nbr')):
                    xtoken = str(csf.config['ACCT_NBR_SALT'])
                    print("xtoken: ", xtoken)
                    print("Flask Input Data: ", input_data)
                    x = cen.clsEnDec(xtoken)
                    ret_val = x.encrypt_str(input_data)
                elif ((dGroup == 'GrDet') & (dTemplate == 'subGrName')):
                    xtoken = str(csf.config['NAME_SALT'])
                    print("xtoken: ", xtoken)
                    print("Flask Input Data: ", input_data)
                    x = cen.clsEnDec(xtoken)
                    ret_val = x.encrypt_str(input_data)
                elif ((dGroup == 'GrDet') & (dTemplate == 'subGrPhone')):
                    xtoken = str(csf.config['PHONE_SALT'])
                    print("xtoken: ", xtoken)
                    print("Flask Input Data: ", input_data)
                    x = cen.clsEnDec(xtoken)
                    ret_val = x.encrypt_str(input_data)
                elif ((dGroup == 'GrDet') & (dTemplate == 'subGrEmail')):
                    xtoken = str(csf.config['EMAIL_SALT'])
                    print("xtoken: ", xtoken)
                    print("Flask Input Data: ", input_data)
                    x = cen.clsEnDec(xtoken)
                    ret_val = x.encrypt_str(input_data)
                else:
                    ret_val = ''
            else:
                ret_val = ''

            # Return value
            return ret_val

        except Exception as e:
            ret_val = ''
            # Return the valid json Error Response
            return ret_val

    def getDecryptProcess(self, dGroup, input_data, dTemplate):
        try:
            xtoken = self.xtoken

            # Capturing the individual element
            dGroup = dGroup
            input_data = input_data
            dTemplate = dTemplate

            # This will check the mandatory json elements
            if ((dGroup != '') & (dTemplate != '')):

                # Based on the Group & Element it will fetch the salt
                # Based on the specific salt it will decrypt the data
                if ((dGroup == 'GrDet') & (dTemplate == 'subGrAcct_Nbr')):
                    xtoken = str(csf.config['ACCT_NBR_SALT'])
                    print("xtoken: ", xtoken)
                    print("Flask Input Data: ", input_data)
                    x = cen.clsEnDec(xtoken)
                    ret_val = x.decrypt_str(input_data)
                elif ((dGroup == 'GrDet') & (dTemplate == 'subGrName')):
                    xtoken = str(csf.config['NAME_SALT'])
                    print("xtoken: ", xtoken)
                    print("Flask Input Data: ", input_data)
                    x = cen.clsEnDec(xtoken)
                    ret_val = x.decrypt_str(input_data)
                elif ((dGroup == 'GrDet') & (dTemplate == 'subGrPhone')):
                    xtoken = str(csf.config['PHONE_SALT'])
                    print("xtoken: ", xtoken)
                    print("Flask Input Data: ", input_data)
                    x = cen.clsEnDec(xtoken)
                    ret_val = x.decrypt_str(input_data)
                elif ((dGroup == 'GrDet') & (dTemplate == 'subGrEmail')):
                    xtoken = str(csf.config['EMAIL_SALT'])
                    print("xtoken: ", xtoken)
                    print("Flask Input Data: ", input_data)
                    x = cen.clsEnDec(xtoken)
                    ret_val = x.decrypt_str(input_data)
                else:
                    ret_val = ''
            else:
                ret_val = ''

            # Return value
            return ret_val

        except Exception as e:
            ret_val = ''
            # Return the valid Error Response
            return ret_val

Key lines to check –

# This will check the mandatory json elements
if ((dGroup != '') & (dTemplate != '')):

Encrypt & Decrypt will only work on the data when the key element contains valid values. In this case, we are looking for values stored in dGroup & dTemplate, which will denote the specific encryption type.

# Based on the Group & Element it will fetch the salt
# Based on the specific salt it will encrypt the data
if ((dGroup == 'GrDet') & (dTemplate == 'subGrAcct_Nbr')):
    xtoken = str(csf.config['ACCT_NBR_SALT'])
    print("xtoken: ", xtoken)
    print("Flask Input Data: ", input_data)
    x = cen.clsEnDec(xtoken)
    ret_val = x.encrypt_str(input_data)
elif ((dGroup == 'GrDet') & (dTemplate == 'subGrName')):
    xtoken = str(csf.config['NAME_SALT'])
    print("xtoken: ", xtoken)
    print("Flask Input Data: ", input_data)
    x = cen.clsEnDec(xtoken)
    ret_val = x.encrypt_str(input_data)
elif ((dGroup == 'GrDet') & (dTemplate == 'subGrPhone')):
    xtoken = str(csf.config['PHONE_SALT'])
    print("xtoken: ", xtoken)
    print("Flask Input Data: ", input_data)
    x = cen.clsEnDec(xtoken)
    ret_val = x.encrypt_str(input_data)
elif ((dGroup == 'GrDet') & (dTemplate == 'subGrEmail')):
    xtoken = str(csf.config['EMAIL_SALT'])
    print("xtoken: ", xtoken)
    print("Flask Input Data: ", input_data)
    x = cen.clsEnDec(xtoken)
    ret_val = x.encrypt_str(input_data)

Here, as you can see that based on dGroup & dTemplate, the application is using specific salt to encrypt or decrypt the corresponding data. Highlighted dark brown showed a particular salt against dGroup & dTemplate.

4. callRunServer.py (This script will create an instance of Flask Server & serve encrypt/decrypt facilities & act as an endpoint or server API & provide the response made to it by clients such as another python or any third-party application.)

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
############################################
#### Written By: SATYAKI DE             ####
#### Written On: 10-Feb-2019            ####
#### Package Flask package needs to     ####
#### install in order to run this       ####
#### script.                            ####
####                                    ####
#### Objective: This script will        ####
#### initiate the encrypt/decrypt class ####
#### based on client supplied data.     ####
#### Also, this will create an instance ####
#### of the server & create an endpoint ####
#### or API using flask framework.      ####
############################################

from flask import Flask
from flask import jsonify
from flask import request
from flask import abort
from clsConfigServer import clsConfigServer as csf
import clsFlask as clf

app = Flask(__name__)

@app.route('/process/getEncrypt', methods=['POST'])
def getEncrypt():
    try:
        # If the server application doesn't have
        # valid json, it will throw 400 error
        if not request.get_json:
            abort(400)

        # Capturing the individual element
        content = request.get_json()

        dGroup = content['dataGroup']
        input_data = content['data']
        dTemplate = content['dataTemplate']

        # For debug purpose only
        print("-" * 157)
        print("Group: ", dGroup)
        print("Data: ", input_data)
        print("Template: ", dTemplate)
        print("-" * 157)

        ret_val = ''

        if ((dGroup != '') & (dTemplate != '')):
            y = clf.clsFlask()
            ret_val = y.getEncryptProcess(dGroup, input_data, dTemplate)
        else:
            abort(500)

        return jsonify({'status': 'success', 'encrypt_val': ret_val})
    except Exception as e:
        x = str(e)
        return jsonify({'status': 'error', 'detail': x})


@app.route('/process/getDecrypt', methods=['POST'])
def getDecrypt():
    try:
        # If the server application doesn't have
        # valid json, it will throw 400 error
        if not request.get_json:
            abort(400)

        # Capturing the individual element
        content = request.get_json()

        dGroup = content['dataGroup']
        input_data = content['data']
        dTemplate = content['dataTemplate']

        # For debug purpose only
        print("-" * 157)
        print("Group: ", dGroup)
        print("Data: ", input_data)
        print("Template: ", dTemplate)
        print("-" * 157)

        ret_val = ''

        if ((dGroup != '') & (dTemplate != '')):
            y = clf.clsFlask()
            ret_val = y.getDecryptProcess(dGroup, input_data, dTemplate)
        else:
            abort(500)

        return jsonify({'status': 'success', 'decrypt_val': ret_val})
    except Exception as e:
        x = str(e)
        return jsonify({'status': 'error', 'detail': x})


def main():
    try:
        print('Starting Encrypt/Decrypt Application!')

        # Calling Server Start-Up Script
        app.run(debug=True, host=str(csf.config['HOST_IP_ADDR']))
        ret_val = 0

        if ret_val == 0:
            print("Finished Returning Message!")
        else:
            raise IOError
    except Exception as e:
        print("Server Failed To Start!")

if __name__ == '__main__':
    main()

 

Keycode to discuss –

Encrypt:

@app.route('/process/getEncrypt', methods=['POST'])
def getEncrypt():

Decrypt:

@app.route('/process/getDecrypt', methods=['POST'])
def getDecrypt():

Based on the path & method, this will trigger either encrypt or decrypt methods.

# If the server application doesn't have
# valid json, it will throw 400 error
if not request.get_json:
    abort(400)

As the comments suggested, this will check whether the sample data send to the server application is a valid JSON or not. And, based on that, it will proceed or abort the request & send the response back to the client.

# Capturing the individual element
content = request.get_json()

dGroup = content['dataGroup']
input_data = content['data']
dTemplate = content['dataTemplate']

Here, the application is capturing the json into individual elements.

if ((dGroup != '') & (dTemplate != '')):
    y = clf.clsFlask()
    ret_val = y.getEncryptProcess(dGroup, input_data, dTemplate)
else:
    abort(500)

The server will process only when both the dGroup & dTemplate will contains no null values. The same logic is applicable for both the encrypt & decrypt process.

    return jsonify({'status': 'success', 'encrypt_val': ret_val})
except Exception as e:
    x = str(e)
    return jsonify({'status': 'error', 'detail': x})

If the process is successful, then it will send a json response, or else it will return json with error details. Similar logic is applicable for decrypt as well.

app.run(debug=True, host=str(csf.config['HOST_IP_ADDR']))

Based on the supplied IP address from our configuration file, this server will create an instance on that specific IP address when triggers. Please refer clsConfigServer.py for particular parameter values.

Let’s run the server application & see the debug encrypt & decrypt screen looks from the server-side –

Windows (64 bit):

windows_debug_encrypt.jpg

And, we’re using Postman Third-party app to invoke this & please find the authentication details & JSON Payload for encrypting are as follows –

postman_windows_auth.jpg

Postman_Windows_Encrypt

Let’s see the decrypt from the server-side & how it looks like from the Postman –

Windows_Debug_Decrypt

Postman_Windows_Decrypt

Mac (32 bit):

Let’s look from MAC’s perspective & how the encryption debug looks like from the server.

MAC_Debug_Encrypt

Please find the screen from postman along with the necessary authentication –

Postman_MAC_Auth

Postman_MAC_Encrypt

Let’s discover how the decrypt looks like both from server & Postman as well –

MAC_Debug_Decrypt

Postman_MAC_Decrypt

So, from this post, we’ve achieved our goal. We’ve successfully demonstrated of a creating a server component using Flask framework & we’ve incorporated our custom encryption/decryption script to create a simulated API for the third-party clients or any other application.

Hope, you will like this approach.

Let me know your comment on the same.

I’ll bring some more exciting topic in the coming days from the Python verse.

Till then, Happy Avenging!

Python Verse – Universe of Avengers in Computer Language World!

The last couple of years, I’ve been working on various technologies. And, one of the interesting languages that I came across is Python. It is extremely flexible for developers to learn & rapidly develop with very few lines of code compared to the other languages. There are major versions of python that I worked with. Among them, python 2.7 & current python 3.7.1 are very popular to developers & my personal favorite.

There are many useful packages that are available to reduce the burden of the developers. Among them, packages like “pandas”, “numpy”, “json”, “AES”, “threading” etc. are extremely useful & one can do lot’s of work with it.

I personally prefer Ubuntu or Mac version of python. However, I’ve worked on Windows version as well or developed python based framework & application, which works in all the major operating systems. If you take care few things from the beginning, then you don’t have to make much more changes of your python application in order to work in all the major operating systems. 🙂

To me, Python Universe is nothing shorter than Marvel’s Universe of Avengers. In order to beat Supreme Villain Thanos (That Challenging & Complex Product with extremely tight timeline), you got to have 6 infinity stones to defeat him.

  1. Space Stone ( Pandas & Numpy )
  2. Reality Stone ( Json, SSL & Encryption/Decryption )
  3. Power Stone ( Multi-Threading/Multi-Processing )
  4. Mind Stone ( OS, Database, Directories & Files )
  5. Soul Stone ( Logging & Exception )
  6. Time Stone ( Cloud Interaction & Framework )

I’ll release a series of python based post in coming days, which might be useful for many peers or information seeker. Hopefully, this installment is a beginning & please follow my post. I hope, very soon you will get many such useful posts.

You get the latest version of Python from the official site given below –

Python Link (3.7.1)

Make sure you must install pip package along with python. I’m not going in details of how one should install python in either of Windows/Mac or Linux.

Just showing you how to install individual python packages.

Windows:

pip install pandas

Linux/Mac:

sudo python3.7 -m pip install pandas

From the second example, you can see that you can install packages to specific python version in case if you have multiple versions of python.

Note that: There might be slight variation based on different versions of Linux. Make sure you are using the correct syntax as per your flavor.

You can get plenty of good sites, where the detailed step-by-step process shared for each operating system.

Till then – Happy Avenging!